Analyse

Gourdon

Utilisés dans les 125 versions de développements suivants :

  • Développement :
  • Remarque :
    Bon développement pas compliqué utilisant le théorème du changement de variables, le théorème Fubini et le théorème de convergence dominée.

    NB:
    Peut se recaser sur la leçon 236
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Le Gourdon fait le cas à valeur dans C. On peut faire comme ici le cas à valeur dans R et se ramener au cas à valeur dans C en remarquant que x dans C n'est autre que a + ib avec a dans R et b dans R.
    Ce développement est souvent plus apprécié que sa version probabiliste ;)
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    D'après moi pour les leçons : 228, 236, 239, 253 et 265.

    Ma référence principale a été le remarquable document de Vincent Douce (bien supérieur au mien), mais je me suis rendu compte par la suite que c'est également fait dans le Gourdon (p315 de la 3e édition).

    Pour information je n'arrive à faire tenir en 15 mins que les 1), 2), 3) et 6) du document.

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    D'après moi pour les leçons : 223 et 236.

    Attention à la petite coquille dans le Gourdon, et la suite $v_n$ est certes un $O(\frac{1}{n^2})$ mais n'est pas positive, donc le critère de comparaison des séries à terme positif ne s'applique pas, et je pense qu'il est plus sûr de préciser que $v_n$ est alors absolument convergente donc convergente.

    J'ai également légèrement modifié l'indiçage sur les intégrales de Wallis pour avoir des calculs qui, d'après moi, se goupillent mieux.

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Exemple pratique de construction de fonction continue partout dérivable nulle part.
    Développement original pas très difficile (même s'il faut faire attention à pas se perdre) mais je le trouve difficilement recasable.
    (p84)
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Développement n°2.2 de https://perso.ens-lyon.fr/benjamin.fleuriault/agreg/dev.pdf
    Ne pas hésiter à faire un petit dessin de l'hyperbole, du cercle unité et du lemniscate, c'est joli.
    Attention les calculs sont assez techniques.
  • Référence :
  • Développement :
  • Remarque :
    Recasages: 203, 208

    Pour que le développement soit assez long, il faut déjà ne pas aller trop vite, et montrer l'un ou les deux détails suivants:
    - les compacts en dimension finie sont les fermés bornés (et non dire que c'est immédiat parce que c'est isomorphe à $\mathbb{K}^n$ ou je ne sais quel autre revers de la main) (c'est un procédé d'extraction diagonale, c'est intéressant en soi)
    - une application continue coercive en dimension finie atteint un minimum pour montrer que la distance à un sev est atteinte

    Gourdon Analyse [3e édition] p50+56

    Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    J'ajoute comme application (plus générale que celle de Gourdon) $\sum_{n=1}^\infty \frac{\mathrm{e}^{\mathrm{i}n\theta}}{n} = -\log(1-\mathrm{e}^{\mathrm{i}\theta})$ pour $0<\theta<2\pi$.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Ce document est très (très) long, mais c'est parce que j'ai tenu à faire une sorte de recueil de méthodes permettant de donner un équivalent de telles suites. Le gros du développement est celui qu'on trouve dans le Bernis, c'est pourquoi je poste ici.
    On retrouve par exemple parmi ces méthodes la comparaison à une équation différentielle et une approche géométrique comme on voit dans le Bernis. Dans tous les cas, j'essaie au maximum de mettre l'intuition en avant. L'intuition est vraiment essentielle pour réussir les exercices de ce type. Et c'est toujours plus intéressant que de parachuter les astuces.
    On étudie également deux problèmes voisins : celui où la dérivée en 0 est positive strictement inférieure à 1, et celui où la fonction colle à la droite y=x mais à l'infini. Les deux problèmes sont abordés dans le Bernis mais j'ai essayé de creuser un peu plus. Ces problèmes permettent de voir les limites des méthodes présentées et permettent de bien se préparer aux questions de jury. Je suis tombé sur ce développement dans la leçon 224 donc j'en ai profité aussi pour glisser quelques questions que le jury m'a posées.
  • Références :
  • Fichier :
  • Développement :
  • Remarque :
    Développement assez original, pas trop dur mais assez long. On utilise le théorème d'inertie de Sylvester, le développement par colonne du déterminant et le fait que si f est une fonction continue, positive, d'intégrale nulle alors f est nulle. Je propose comme recasages supplémentaires la 170 et la 171, à condition de bien insister sur le lemme. NB1 : Il faut se convaincre soi-même de la pertinence d'un recasage et être capable de défendre son choix le jour J devant le jury. Vous pouvez, évidemment, ne pas être d'accord avec moi. NB2 : Il peut y avoir des fautes dans ce que j'écris, faites attention.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Un développement assez compliqué quand on commence à le travailler, mais ensuite, les étapes se retiennent plutôt facilement. Il a l'air très long (il l'est d'ailleurs) mais il y a certaines étapes qu'on peut passer rapidement à l'oral pour ne pas les écrire, même s'il faut savoir les détailler en cas de besoin a posteriori.

    La page exacte de la référence est indiquée dans le document (c'est la 2ème édition d'ailleurs).

    Attention aux coquilles.
  • Référence :
  • Fichier :

Utilisés dans les 265 versions de leçons suivantes :

  • Leçon :
  • Remarque :
    Références en fin de plan.

    C’est une leçon très vaste dans laquelle on peut mettre beaucoup de choses. J’ai choisi de me concentrer sur les espaces vectoriels normés, le calcul différentiel et les espaces préhilbertiens, avec les séries de Fourier. En partie IV, je donne d’autres applications possibles.

    Développements :
    1) Équivalence des normes et théorème de Riesz [je ne l’ai pas encore appris, si c’est trop court je rajouterai le contre-exemple 4]
    2) Lemme de Morse

    Plan :
    I. Espaces vectoriels normés
    1) Toplogie
    2) Applications linéaires
    3) Compacité
    II. Calcul différentiel
    1) Différentielle et dérivée partielle
    2) Théorème d’inversion locale et lemme de Morse
    III. Espaces préhilbertiens et séries de Fourier
    1) Projection orthogonale dans un espace préhilbertien
    2) Application aux séries de Fourier
    IV. Autres applications possibles
    1) Optimisation en dimension finie
    2) Équations différentielles

    On aurait aussi pu parler de la mesure de Lebesgue. Le Briane Pagès le fait très bien. De même, dans la partie Calcul Différentiel, on peut aussi évoquer les matrices jacobiennes (c’est fait dans le Gourdon) et les espaces tangents pour aller plus loin.

    On peut aussi taper dans des notions plus difficiles (notamment dans tout ce qui est lié aux opérateurs) mais mon niveau ne me le permet pas xD
  • Références :
  • Fichier :