Utilisée dans les 2 versions de développements suivants :
Contre-exemples de convergence de variables aléatoires
Formule d'Hadamard et un contre-exemple
-
Développement :
-
Référence :
Utilisée dans les 43 versions de leçons suivantes :
260 : Espérance, variance et moments d'une variable aléatoire.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 18.05.17
-
Références :
-
Fichier :
204 : Connexité. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 25.05.17
-
Références :
-
Fichier :
204 : Connexité. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Topologie
, Queffelec
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse réelle et complexe
, Rudin
-
Histoires hédonistes de groupes et géométries, Tome 1, Caldero, Germoni
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Elements d'analyse réelle
, Rombaldi
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Cours d'analyse
, Pommelet
-
Analyse
, Gourdon
-
Optimisation et analyse convexe, Hiriart-Urruty
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Objectif Agrégation, Beck, Malick, Peyré
-
Probabilités, Barbe-Ledoux
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
265 : Exemples d’études et d’applications de fonctions usuelles et spéciales.
-
Leçon :
-
Références :
-
Fichier :
262 : Convergences d’une suite de variables aléatoires. Théorèmes limite. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[BaLe] Probabilités : Barbe-Ledoux
[Hauch] Les contre-exemples en mathématiques : Hauchecorne
[Les] 131 Développements pour l’oral : D. Lesesvre
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
-
Références :
-
Fichier :
204 : Connexité. Exemples et applications.
-
Leçon :
-
Références :
-
Histoires hédonistes de groupes et géométries, Tome 1, Caldero, Germoni
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Analyse 1
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Analyse 3, Francinou, Gianella, Nicolas
-
Analyse
, Gourdon
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Groupes de Lie classiques, Mneimné, Testard
-
Cours d'analyse
, Pommelet
-
Topologie
, Queffelec
-
Analyse réelle et complexe
, Rudin
-
Un max de maths
, Zavidovique
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Références :
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Objectif Agrégation, Beck, Malick, Peyré
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Analyse
, Gourdon
-
Exercices pour l'agrégation - Analyse 1
, Chambert-Loir
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Remarque :
Voici mon plan totalement improvisé de mon oral blanc de leçon d'analyse au sein de ma prépa-agreg. Vous constaterez qu'il est loin d'être parfait et comporte quelles coquilles dues au stress et au manque de temps, mais je l'ai déposé pour que vous puissiez voir à quoi ressemble une production dans le temps imparti de l'épreuve officielle.
Je laisse en référence les livres que j'avais utilisés pendant le temps de préparation. Pour l'application 27, j'avais utilisé le Isenmann-Pecatte uniquement parce que je n'étais pas encore certain que ce livre allait être interdit pour les vrais oraux, mais vous devriez trouver pléthore de livres autorisés qui en parlent.
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Références :
-
Fichier :
262 : Convergences d’une suite de variables aléatoires. Théorèmes limite. Exemples et applications.
-
Leçon :
-
Remarque :
Scan flou désolé.
-
Références :
-
Fichier :
215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.
-
Leçon :
-
Remarque :
Plan de leçon réalisé en tout début d'année. Mes deux développements sont le calcul de la différentielle de l'exponentielle matrice, et la preuve du théorème d'inversion locale en dimension finie.
La référence au critère de Sylvester est plus pour le folklore et pour parler d'outils d'algèbre qui servent en analyse.
-
Références :
-
Fichier :
204 : Connexité. Exemples d'applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Calcul Intégral
, Faraut
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Analyse pour l'agrégation, Queffelec, Zuily
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Thèmes pour l'agrégation de mathématiques - Eléments de cours, développements et exercices corrigés, Houkari
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse
, Gourdon
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Analyse complexe pour la Licence 3, Tauvel
-
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Exercices de probabilités, M. Cottrell, V. Genon-Catalot, C.Duhamel et T. Meyre
-
Fichier :
262 : Convergences d'une suite de variables aléatoires.Théorèmes limite. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
266 : Utilisation de la notion d'indépendance en probabilités.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
235 : Problèmes d'interversion de symboles en analyse.
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Remarque :
C'est la toute première leçon d'analyse que j'ai faite. Il n'y a peut-être pas assez de contre-exemples... N'hésitez pas à fouiller le Hauchecorne pour en trouver.
Dans le DEV 2, j'avais le temps de faire Abel angulaire et taubérien faible.
J'ai l'impression que c'est une leçon qui porte essentiellement sur la convergence uniforme, donc il faut bien maîtriser ce sujet. Cependant, il ne faut pas trop laisser de côté les autres modes de convergence, on aurait pu mettre la transformée de Fourier dans $L^2(\mathbb{R})$, des résultats de densité dans les $L^p$ aussi peut-être, on pouvait développer plus la fonction zeta... J'aurais aussi très bien pu mettre des probas, avec toutes les convergences de variables aléatoires... Encore une fois je l'ai faite en tout début d'année donc je n'avais pas encore le recul de l'année entière... Mais je pense que la leçon tient quand même la route.
J'ai mis que j'avais utilisé le Combes mais en fait ce n'est pas le cas.
-
Références :
-
Fichier :
262 : Convergences d'une suite de variables aléatoires.Théorèmes limite. Exemples et applications.
-
Leçon :
-
Remarque :
Il y a de bonnes références pour les probabilités, le Chabanol par exemple, même s'il n'y a pas toutes les démonstrations.
La difficulté des leçons de probabilités est qu'elles se ressemblent toutes plus ou moins, mais il faut pour chacune d'elles orienter le plan de façon à insister sur la notion mentionnée par le titre.
Il faut axer cette leçon sur les différents modes de convergence des variables aléatoires, et surtout les liens entre ces convergences. C'est pas mal de faire un schéma résumé en annexe.
Je conseillerais de refaire quelques exercices et de se faire une petite fiche-méthode pour montrer les différentes convergences (quels outils utiliser pour chaque mode de convergence)
Le DEV1 que je ne recase nulle part ailleurs se trouve éparpillé dans les Ouvrard, je l'avais pris sur maths-agreg et je l'avais appris par cœur Il est aussi dans le Gourdon Algèbre-probas je crois.
-
Références :
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Remarque :
C'est une leçon qui porte essentiellement sur la convergence uniforme, donc il faut bien maîtriser ce sujet. Cependant, il ne faut pas trop laisser de côté les autres modes de convergence (notamment dans les L^p) et on peut mettre aussi des probabilités avec toutes les convergences de variables aléatoires. Enfin il faut sourtout penser à donner des exemples et des contre-exemples.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
262 : Convergences d'une suite de variables aléatoires.Théorèmes limite. Exemples et applications.
-
Leçon :
-
Remarque :
Il faut axer cette leçon sur les différents modes de convergence des variables aléatoires et surtout les liens entre ces différents modes convergences (et également faire un schéma résumé en annexe pour que ça soit plus clair pour le jury). Il faut refaire quelques exercices et savoir quelle méthode utiliser pour montrer tel ou tel mode de convergence.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Probabilités 2
, Ouvrard
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Carnet de voyage en Analystan, Caldero
-
Les contre-exemples en mathématiques
, Hauchecorne
-
ORAUX X-ENS 6 (nouvelle édition), Francinou, Gianella, Nicolas
-
Fichier :
236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.
-
Leçon :
-
Remarque :
Plan préparé en binôme pendant l'année de préparation à l'agreg. L'ordre est peut-être à améliorer, et les titres de partie aussi, mais je trouve ce plan plutôt complet ! J'espère que cela vous sera utile.
-
Références :
-
Analyse numérique et équation différentielle
, Demailly
-
Analyse numérique, Une approche mathématique, Michelle Schatzman
-
Calcul intégral, Candelpergher
-
Analyse
, Gourdon
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Analyse réelle et complexe
, Rudin
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Petit guide de calcul différentiel
, Rouvière
-
Fichier :
104 : Groupes finis. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
206 : Exemples d'utilisation de la notion de dimension finie en analyse.
-
Leçon :
-
Remarque :
J'aime pas.
-
Références :
-
Petit guide de calcul différentiel
, Rouvière
-
Oraux X-ENS Analyse 4
, Francinou, Gianella, Nicolas
-
Analyse
, Gourdon
-
Objectif Agrégation, Beck, Malick, Peyré
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Équations différentielles, Florent Berthelin
-
Fichier :
215 : Applications différentiables définies sur un ouvert de Rn. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime pas.
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Analyse
, Gourdon
-
Oraux X-ENS Analyse 1
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
235 : Problèmes d'interversion de symboles en analyse.
241 : Suites et séries de fonctions. Exemples et contre-exemples.
262 : Convergences d'une suite de variables aléatoires.Théorèmes limite. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime beaucoup.
-
Références :
-
Fichier :
266 : Utilisation de la notion d'indépendance en probabilités.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :