Dans un espace de Hilbert $(H,<.,.>)$ , soit $C$ un convexe fermé.
Pour tout $x$ dans $H$, il existe un unique $y= P_C(x)$ tel que $||x-y||=inf_{\forall z \in C} ||x-z||$ .
Et $P_C(x)$ est caractérisé par la propriété suivante : $\forall z \in C ~ Re( < z-x , y-x > ) ~ \leq 0 $
Vous pouvez aller jusqu'à montrer le théorème de Riesz si vous avez envie ;)
Rmq : vous pouvez vous restreindre au cas réel mais la difficulté est la même ;)