Leçon 221 : Equations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.

(2022) 221
(2024) 221

Dernier rapport du Jury :

(2022 : 221 - Équations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.) La théorie de Cauchy-Lipschitz linéaire constitue une porte d'entrée obligée pour cette leçon. Elle constitue un des premiers triomphes historiques de l'utilisation de la complétude (méthode des approximations successives), et un exemple fondamental d'intervention de la dimension finie en analyse. Sans que cet aspect devienne trop envahissant, les candidats pourront proposer quelques exemples de résolutions explicites : cas des coefficients constants (qui mobilise fortement la réduction des endomorphismes), utilisation de séries entières, variation des constantes, etc. Même dans le cadre linéaire, les études qualitatives présentent un grand intérêt et fournissent de nombreuses possibilités aux candidats : étude du comportement asymptotique des solutions (pour lequel le lemme de Gronwall est un outil d'une grande efficacité), de la distribution des zéros, etc. Les candidats solides pourront s'intéresser à la linéarisation d'équations non linéaires au voisinage d'un point d'équilibre, proposer des exemples de problèmes aux limites (théorie de Sturm-Liouville) ou d'études d'équations aux dérivées partielles linéaires.

(2019 : 221 - Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.) Le jury attend d’un candidat qu’il sache déterminer rigoureusement la dimension de l’espace vectoriel des solutions. Le cas des systèmes à coefficients constants fait appel à la réduction des matrices qui doit être connue et pratiquée. Le jury attend qu’un candidat puisse mettre en œuvre la méthode de variation des constantes pour résoudre une équation différentielle linéaire d’ordre 2 simple (à coefficients constants par exemple) avec second membre ; un trop grand nombre de candidats se trouve déstabilisé par ces questions. $\\$ L’utilisation des exponentielles de matrices a toute sa place ici et doit être maîtrisée. Les problématiques de stabilité des solutions et le lien avec l’analyse spectrale devraient être davantage exploités dans cette leçon. Le théorème de Cauchy-Lipschitz linéaire constitue un exemple de développement pertinent pour cette leçon. Les résultats autour du comportement des solutions, ou de leurs zéros, de certaines équations linéaires d’ordre 2 (Sturm, Hill-Mathieu,...) sont aussi d’autres possibilités. $\\$ Pour aller plus loin, la résolution au sens des distributions d’équations du type $T'+aT=S$ via la méthode de variation de la constante, ou des situations plus ambitieuses, trouvera sa place dans cette leçon.
(2017 : 221 - Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.) Le jury attend d’un candidat qu’il sache déterminer rigoureusement la dimension de l’espace vectoriel des solutions. Le cas des systèmes à cœfficients constants fait appel à la réduction des matrices qui doit être connue et pratiquée. Le jury attend qu’un candidat puisse mettre en œuvre la méthode de variation des constantes pour résoudre une équation différentielle linéaire d’ordre 2 simple (à coefficients constants par exemple) avec second membre. L’utilisation des exponentielles de matrices a toute sa place ici. Les problématiques de stabilité des solutions et le lien avec l’analyse spectrale devraient être exploitées. Le théorème de Cauchy-Lipschitz linéaire constitue un exemple de développement pertinent pour cette leçon. Les résultats autour du comportement des solutions, ou de leurs zéros, de certaines équations linéaires d’ordre 2 (Sturm, Hill-Mathieu,...) sont aussi d’autres possibilités.
(2016 : 221 - Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.) Le jury attend d’un candidat qu’il sache déterminer rigoureusement la dimension de l’espace vectoriel des solutions. Le cas des systèmes à coefficients constants fait appel à la réduction des matrices qui doit être connue et pratiquée. Le jury attend qu’un candidat puisse mettre en œuvre la méthode de variation des constantes pour résoudre une équation différentielle linéaire d’ordre 2 simple (à coefficients constants par exemple) avec second membre. L’utilisation des exponentielles de matrices a toute sa place ici. Les problématiques de stabilité des solutions et le lien avec l’analyse spectrale devraient être exploitées. Le théorème de Cauchy-Lipschitz linéaire constitue un exemple de développement pertinent pour cette leçon. Les résultats autour du comportement des solutions, ou de leurs zéros, de certaines équations linéaires d’ordre 2 (Sturm, Hill-Mathieu, . . .) sont aussi d’autres possibilités.
(2015 : 221 - Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.) On attend d'un candidat qu'il sache déterminer rigoureusement la dimension de l'espace vectoriel des solutions (dans le cas de la dimension finie, bien sûr). Le cas des systèmes à coefficients constants fait appel à la réduction des matrices qui doit être connue et pratiquée. L'utilisation des exponentielles de matrices doit pouvoir s'expliquer. Dans le cas général, certains candidats évoquent les généralisations de l'exponentielle (résolvante) via les intégrales itérées. Les problématiques de stabilité des solutions et le lien avec l'analyse spectrale devraient être exploitées.
(2014 : 221 - Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.) Exemples et applications. On attend d'un candidat qu'il sache déterminer rigoureusement la dimension de l'espace vectoriel des solutions (dans le cas de la dimension finie bien-sûr). Le cas des systèmes à coefficients constants fait appel à la réduction des matrices qui doit être connue et pratiquée. L'utilisation des exponentielles de matrices doit pouvoir s'expliquer. Dans le cas général, certains candidats évoquent les généralisations de l'exponentielle (résolvante) via les intégrales itérées. Les problèmatiques de stabilité des solutions et le lien avec l'analyse spectrale devrait être exploitées.

Développements :

Plans/remarques :

2023 : Leçon 221 - Equations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.

  • Auteur :
  • Remarque :
    Voici mes plans de leçons que j'ai réalisé en format complet.
    Si cela peut aider des gens, avec plaisir !
    Tout mes plans de leçons sont inspirés majoritairement de Jouaucon, Marvin et abarrier ( Merci à eux ! ).
    Les références sont à la fin.
    Attention aux éventuels coquilles.
  • Fichier :
  • Auteur :
  • Remarque :
    Possibilité d'avoir ma version complète manuscrite en me contactant par mail.
  • Fichier :

2022 : Leçon 221 - Équations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.


2020 : Leçon 221 - Équations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.

  • Auteur :
  • Remarque :
    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...
  • Fichier :

2019 : Leçon 221 - Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.


2018 : Leçon 221 - Equations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.


2017 : Leçon 221 - Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.


2016 : Leçon 221 - Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.


Retours d'oraux :

Pas de retours pour cette leçon.

Références utilisées dans les versions de cette leçon :

Analyse , Gourdon (utilisée dans 554 versions au total)
Algèbre linéaire , Grifone (utilisée dans 95 versions au total)
Équations différentielles, Florent Berthelin (utilisée dans 58 versions au total)
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer (utilisée dans 39 versions au total)
Elements d'analyse réelle , Rombaldi (utilisée dans 87 versions au total)
Analyse numérique et équation différentielle , Demailly (utilisée dans 73 versions au total)
Oraux X-ENS Analyse 4 , Francinou, Gianella, Nicolas (utilisée dans 55 versions au total)
Analyse pour l'agrégation, Queffelec, Zuily (utilisée dans 211 versions au total)
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte (utilisée dans 133 versions au total)
Cours d'analyse , Pommelet (utilisée dans 47 versions au total)
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi (utilisée dans 449 versions au total)
Leçons pour l’agrégation de mathématiques - Préparation à l’oral, Dreveton, Maximilien & Lhabouz, Joachim (utilisée dans 20 versions au total)
Calcul différentiel , Gonnord, Tosel (utilisée dans 12 versions au total)