Utilisée dans les 30 versions de développements suivants :
Théorèmes de Cochran et de Fisher
-
Développement :
-
Références :
-
Fichier :
Formule de Stirling (par le théorème central limite)
Fonctions caractéristiques de la loi normale et de Cauchy
-
Développement :
-
Référence :
-
Fichier :
Loi forte des grands nombres L^2
Inégalité de Le Cam
-
Développement :
-
Remarque :
Développement original qui permet de justifier la convergence en loi de $\mathcal{B}\left(n,\frac{\lambda}{n}\right)$ vers $\mathcal{P}(\lambda)$ avec une borne de l'erreur. L'inconvénient c'est qu'il faut apprendre la loi du couplage par cœur.
Le Garet Kurtzman n'a pas exactement la même rédaction. Pour faire court, le livre part des lois marginales au lieu de partir de la loi du couple. Mais j'avoue ne pas avoir vérifié que la méthode de bakouche (que je me suis permis de réécrire ici) rebouclait bien avec ce qui est écrit dans ce livre.
(pp 214, 450)
-
Référence :
-
Fichier :
Étude relative à la fonction Zeta
-
Développement :
-
Remarque :
Leçons 121, 230, 264, 265, 266.
-
Référence :
-
Fichier :
Fonctions caractéristiques de la loi normale et de Cauchy
-
Développement :
-
Remarque :
Leçons 236, 239, 245, 250, 261, 267.
Deux méthodes pour chacune des fonctions caractéristiques, on sélectionnera en fonction de la leçon dans laquelle on la recase.
-
Référence :
-
Fichier :
Étude relative à la fonction Zeta
Théorème central limite
-
Développement :
-
Remarque :
Attention aux prérequis, dans cette version le théorème de Lévy et la régularité de la fonction caractéristique ne sont pas démontré.
Rappel : attention aux erreurs/typos possibles et à la pertinence des développements, c'est à vous de vérifier et de juger.
-
Références :
-
Fichier :
Marches aléatoires sur Z
-
Développement :
-
Référence :
-
Fichier :
Théorème de Lévy et TCL
-
Développement :
-
Références :
-
Fichier :
Fonction zeta et nombres premiers
-
Développement :
-
Référence :
-
Fichier :
Cochran, Fischer et application test chi-deux
-
Développement :
-
Remarque :
Recasages choisis : 261, 262, 264, 266 (j'ai mis la 264 pour l'application, mais pas hyper sûre de ce recasage)
-
Références :
-
Fichier :
Paul-Lévy, TCL et applications
-
Développement :
-
Remarque :
Recasages choisis : 250, 261, 262, 265, 266.
Je fais la preuve de Paul-Lévy, le TCL et deux applications, en fonction de la leçon je choisis quels résultats je démontre
-
Références :
-
Fichier :
Étude relative à la fonction Zeta
-
Développement :
-
Remarque :
Recasages: 121, 265, 266
Garet-Kurtzmann p56+461 (on trouvera également cet exercice dans le Rombaldi p345, mais rédigé différemment)
Application à le divergence de la série des inverses des premiers.
Je recommande vivement d'écrire au tableau le découpage en questions au début de la présentation: cela rend la preuve transparente, et ça donne un point d'appui si on se perd durant le développement. Ce n'est pas un temps perdu, dirai-je même c'est du temps gagné: il faut les écrire à un moment ou à un autre durant la présentation, plutôt que de le faire au fur et à mesure autant le faire dès le début.
Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
-
Références :
-
Fichier :
Théorème de Riesz-Fischer (a.k.a. Lp est complet)
-
Développement :
-
Référence :
-
Fichier :
Statistiques du nombre de cycles d'une permutation aléatoire
-
Développement :
-
Remarque :
Une version sympa trouvée dans le Gourdon et sur Mathstackexchange pour la partie sur les points fixes. Développement très fun !
Édit : j'ai rajouté un théorème limite central sur le nombre de cycles, un résultat que j'ai trouvé dans le Garet, Kurtzmann et que j'ai montré à la main plutôt qu'avec le théorème limite central de Lindeberg, à noter pour la leçon 262 !
-
Références :
-
Fichier :
Loi forte des grands nombres L^2
Marche aléatoire simple sur Z
Théorème de Lévy et TCL
-
Développement :
-
Remarque :
A la fin de mes devs je mets toujours une petite note sur les résultats annexes à savoir, c'est très subjectif et non exhaustif, il y a évidemment pleins d'autres choses à savoir sur chaque dev que ce que je mets.
Pour me contacter si besoin : axel.carpentier2001@gmail.com
-
Référence :
-
Fichier :
Fonction caractéristique caractérise la loi + Théorème de Lévy
-
Développement :
-
Références :
-
Fichier :
Théorème de Riesz-Fischer (a.k.a. Lp est complet)
Théorème de Lévy et TCL
-
Développement :
-
Remarque :
Garet Kurtzman pour le théorème de Lévy et Chabanol pour le TCL. Je fais un peu l'anguille à la fin de la preuve pour éviter de parler de log complexe.
Mon avis sur les recasages:
Loi d'une variable aléatoire, convergence d'une suite de variables aléatoires, et ça me semble très acceptable dans transformation de Fourier.
Les remarques que j'ai mises à la fin du document sont purement personnelles ; elles font souvent référence aux difficultés que j'ai pu avoir au moment de préparer mes développements, peut-être certains pourront les trouver utiles... S'il y a une erreur dans le document ou quelque chose de douteux, vous pouvez me contacter par mail avec plaisir.
-
Références :
-
Fichier :
Convergence d'une suite de Variable Aléatoire
Convergence de lois binomiales vers une loi de Poisson
Fonctions caractéristiques de la loi normale et de Cauchy
Théorème de Weierstrass (par les probabilités)
-
Développement :
-
Remarque :
Pour les leçons : 201, 203, 209, (228), 264, 266
-
Références :
-
Fichier :
Formule de Stirling (par le théorème central limite)
-
Développement :
-
Remarque :
Pour les leçons : 223, 224, 261, 262, 266.
-
Références :
-
Fichier :
Utilisée dans les 48 versions de leçons suivantes :
260 : Espérance, variance et moments d'une variable aléatoire.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
202 : Exemples de parties denses et applications.
-
Leçon :
-
Références :
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Analyse pour l'agrégation, Queffelec, Zuily
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Cours d'analyse
, Pommelet
-
Cours d'analyse fonctionnelle, Daniel Li
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Calcul Intégral
, Faraut
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Cours d'analyse fonctionnelle, Daniel Li
-
Analyse
, Gourdon
-
Oraux X-ENS Analyse 4
, Francinou, Gianella, Nicolas
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :
261 : Loi d’une variable aléatoire : caractérisations, exemples, applications.
-
Leçon :
-
Références :
-
Fichier :
262 : Convergences d’une suite de variables aléatoires. Théorèmes limite. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
264 : Variables aléatoires discrètes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
266 : Illustration de la notion d’indépendance en probabilités.
-
Leçon :
-
Références :
-
Fichier :
250 : Transformation de Fourier. Applications.
-
Leçon :
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
261 : Loi d’une variable aléatoire : caractérisations, exemples, applications.
-
Leçon :
-
Référence :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Analyse
, Gourdon
-
Elements d'analyse réelle
, Rombaldi
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Analyse
, Gourdon
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours d'analyse fonctionnelle, Daniel Li
-
Fichier :
190 : Méthodes combinatoires, problèmes de dénombrement.
-
Leçon :
-
Remarque :
Leçon qui peut faire peur au premier abord car il est rare d'avoir eu un cours sur cette thématique.
Finalement, elle est super cool à faire et change beaucoup des autres leçons :))
Mon plan contient beaucoup de résultats (63) mais c'est surtout la première partie qui est longue (24) et peut-être qu'il n'est pas nécessaire de rappeler certaines définitions en théorie des groupes.
Mes développements sont : "Nombre de Bell" et "Loi de réciprocité quadratique" qui rentrent impec dedans ;)
Il y a beaucoup de références mais elles ont déjà toutes été utilisées dans d'autres leçons donc bon…
On peut remplacer le Isenmann par le Caldero bien entendu…
-
Références :
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Algèbre L3
, Szpirglas
-
Théorie des Groupes, Félix Ulmer
-
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Fichier :
264 : Variables aléatoires discrètes. Exemples et applications.
-
Leçon :
-
Remarque :
Leçon qui vaut le détour d'être faite car elle n'est pas si compliquée même pour ceux qui ne font pas proba-stats, je pense…
Mes développements sont : Borel-Cantelli+2 applis et le TCL+une appli (en admettant Lévy).
Je prends le risque de définir la convergence en loi dans le cas général et non pas dans le cas discret. Il est important de connaitre la caractérisation en discret du coup…
Mes références restent des classiques en probas donc ce plan n'est pas forcément original.
A noter : les exercices du Barbe-Ledoux sont corrigés dans "Probabilités exos corrigés" de Hervé Carrieu.
-
Références :
-
Fichier :
121 : Nombres premiers. Applications.
262 : Convergences d’une suite de variables aléatoires. Théorèmes limite. Exemples et applications.
264 : Variables aléatoires discrètes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
265 : Exemples d’études et d’applications de fonctions usuelles et spéciales.
-
Leçon :
-
Références :
-
Analyse complexe pour la Licence 3, Tauvel
-
Elements d'analyse réelle
, Rombaldi
-
Analyse
, Gourdon
-
Objectif Agrégation, Beck, Malick, Peyré
-
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer
-
Les fonctions spéciales vues par les problèmes, 517.5 , Groux, Soulat
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Calcul Intégral
, Faraut
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
266 : Illustration de la notion d’indépendance en probabilités.
-
Leçon :
-
Remarque :
J'ai choisi de détailler, dans ma première partie, l'existence d'une suite de variables aléatoires identiques et indépendantes d'une loi donnée, à partir d'une suite de pile ou face.
-
Références :
-
Fichier :
218 : Formules de Taylor. Exemples et applications.
-
Leçon :
-
Remarque :
2ème développement très forcé, je n'aime pas cette leçon mais si jamais ça peut vous donner une idée..
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un pour la licence 1
-
Références :
-
Fichier :
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Calcul Intégral
, Faraut
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Analyse pour l'agrégation, Queffelec, Zuily
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Thèmes pour l'agrégation de mathématiques - Eléments de cours, développements et exercices corrigés, Houkari
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Fichier :
236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un pour la licence 1
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Calcul Intégral
, Faraut
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Analyse complexe pour la Licence 3, Tauvel
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Thèmes pour l'agrégation de mathématiques - Eléments de cours, développements et exercices corrigés, Houkari
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Probabilités 1
, Ouvrard
-
Exercices de probabilités, M. Cottrell, V. Genon-Catalot, C.Duhamel et T. Meyre
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse
, Gourdon
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Analyse complexe pour la Licence 3, Tauvel
-
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Exercices de probabilités, M. Cottrell, V. Genon-Catalot, C.Duhamel et T. Meyre
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Analyse
, Gourdon
-
Analyse complexe pour la Licence 3, Tauvel
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer
-
Exercices de probabilités, M. Cottrell, V. Genon-Catalot, C.Duhamel et T. Meyre
-
Fichier :
250 : Transformation de Fourier. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Calcul Intégral
, Faraut
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Thèmes pour l'agrégation de mathématiques - Eléments de cours, développements et exercices corrigés, Houkari
-
Probabilités 1
, Ouvrard
-
Exercices de probabilités, M. Cottrell, V. Genon-Catalot, C.Duhamel et T. Meyre
-
De l'intégration aux probabilités, Garet, Kurtzman
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un pour la licence 1
-
Références :
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Petit guide de calcul différentiel
, Rouvière
-
Objectif Agrégation, Beck, Malick, Peyré
-
Calcul Intégral
, Faraut
-
Exercices de probabilités, M. Cottrell, V. Genon-Catalot, C.Duhamel et T. Meyre
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Elements d'analyse fonctionnelle
, Hirsch
-
Fichier :
262 : Convergences d'une suite de variables aléatoires.Théorèmes limite. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
264 : Variables aléatoires discrètes. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
266 : Utilisation de la notion d'indépendance en probabilités.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
264 : Variables aléatoires discrètes. Exemples et applications.
236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.
244 : Exemples d'études et d'applcations de fonctions usuelles et spéciales.
266 : Utilisation de la notion d'indépendance en probabilités.
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
J'aime pas du tout.
-
Références :
-
Fichier :
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Analyse réelle et complexe
, Rudin
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Oraux X-ENS Analyse 3, Francinou, Gianella, Nicolas
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Analyse
, Gourdon
-
Fichier :
245 : Fonctions holomorphes et méromorphes sur un ouvert de C. Exemples et applcations.
-
Leçon :
-
Remarque :
J'aime pas.
-
Références :
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Analyse réelle et complexe
, Rudin
-
Fichier :
250 : Transformation de Fourier. Applications.
-
Leçon :
-
Remarque :
J'aime pas.
-
Références :
-
Fichier :
262 : Convergences d'une suite de variables aléatoires.Théorèmes limite. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime beaucoup.
-
Références :
-
Fichier :
264 : Variables aléatoires discrètes. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime pas.
-
Références :
-
Fichier :
266 : Utilisation de la notion d'indépendance en probabilités.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :