Utilisée dans les 11 versions de développements suivants :
Théorème de Bohr Mollerup
-
Développement :
-
Remarque :
L'équivalent $\Gamma(x) \sim \sqrt{2\pi} ~x^{x-1/2} ~e^{-x}$ que j'utilise en cours de route s'obtient via la méthode de Laplace mais ma seule référence est un très bon cours... On peut se contenter de la méthode habituelle, que je trouve un peu moins élégante.
Le résultat permet de montrer la formule de Legendre sans aucun calcul, ça vaut le coup de le mettre au moins dans le plan.
-
Référence :
-
Fichier :
Dunford pour le calcul de rayon spectral
-
Développement :
-
Remarque :
Gay, Lemonnier, Rombaldi p 620, Houkari p 125, Isenmann p 155
NDLR : pas sûr de la réf pour Rombaldi
-
Références :
Minimisation d'une fonctionnelle quadratique
Théorème de Bohr-Mollerup (par la méthode d'Artin)
-
Développement :
-
Remarque :
Recasages: 229, 253, 265
Combinaison de Gourdon (v3) p315 et Rombaldi p366
Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
-
Références :
-
Fichier :
Caractérisation réelle de Gamma avec la log convexité
Convergence d'une suite lente
Étude de la fonction Gamma sur la droite réelle
-
Développement :
-
Références :
-
Fichier :
Etude de la fonction Gamma et lemme d'Euler
-
Développement :
-
Remarque :
Si on choisit de faire ce développement, il faut vraiment avoir travaillé la fonction Gamma de fond en comble, jusqu'à tracer son graphe. Il faut aussi connaître sa version complexe, et avoir une idée de comment on la prolonge de façon méromorphe sur $\mathbb{C}$ privé de $\mathbb{Z}^-$.
Sinon, ce développement se recase très bien et n'est vraiment pas difficile.
-
Référence :
-
Fichier :
Etude de la fonction Gamma et théorème de Bohr-Mollerup
Divergence de la série des inverses des nombres premiers
-
Développement :
-
Remarque :
On utilise un argument de probabilité pour montrer que la série des $\sum 1/{p_k}$ diverge. Je propose ensuite une application de ceci grâce au lemme de Borel-Cantelli. Deux références possibles pour la première partie : le Gourdon ou le Rombaldi. Je crois que je n'avais pas de référence pour l'application, mais ce n'est pas très difficile. J'admets ici que la fonction $\zeta$ diverge en $1^{+}$ mais je pense qu'il faut savoir le prouver pour présenter ce développement.
Côté recasages à mon avis:
Séries de nombres réels ou complexes
VA discrètes
Indépendance en proba
Je suppose que mettre ce développement en algèbre dans la leçon "nombres premiers" est envisageable, mais je pense qu'il y a des choses intéressantes et plus algébriques à faire dans cette leçon.
Les remarques que j'ai mises à la fin du document sont purement personnelles ; elles font souvent référence aux difficultés que j'ai pu avoir au moment de préparer mes développements, peut-être certains pourront les trouver utiles... S'il y a une erreur dans le document ou quelque chose de douteux, vous pouvez me contacter par mail avec plaisir.
-
Références :
-
Fichier :
Utilisée dans les 77 versions de leçons suivantes :
228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 18.05.17
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Elements d'analyse réelle
, Rombaldi
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Cours d'analyse
, Pommelet
-
Analyse
, Gourdon
-
Optimisation et analyse convexe, Hiriart-Urruty
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité, dérivation faible des fonctions réelles d’une variable réelle. Exemples et applications.
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1=f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Elements d'analyse réelle : Rombaldi
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Les] 131 Développements pour l’oral : D. Lesesvre
[OA] Objectif Agrégation : Beck, Malick, Peyré
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Cours d'analyse fonctionnelle, Daniel Li
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Rom] Elements d'analyse réelle : Rombaldi
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[Ouv2] Probabilités 2 : Ouvrard
[GouAn] Analyse : Gourdon
[FGN An2] Oraux X-ENS Analyse 2 : Francinou, Gianella, Nicolas
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Elements d'analyse réelle
, Rombaldi
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Probabilités 2
, Ouvrard
-
Analyse
, Gourdon
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Elements d'analyse réelle : Rombaldi
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Les] 131 Développements pour l’oral : D. Lesesvre
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Cours d'analyse fonctionnelle, Daniel Li
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[RDO] Cours de mathématiques, topologie et éléments d'analyse Tome 3 : Ramis, Deschamps, Odoux
[GouAn] Analyse : Gourdon
[Rom] Elements d'analyse réelle : Rombaldi
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[NR] No Reference :(
[Rou] Petit guide de calcul différentiel : Rouvière
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Has] Topologie générale et espaces normés : Hage Hassan
[Les] 131 Développements pour l’oral : D. Lesesvre
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Tau] Analyse complexe pour la Licence 3 : Tauvel
[Rom] Elements d'analyse réelle : Rombaldi
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[NR] No Reference :(
-
Références :
-
Topologie générale et espaces normés
, Hage Hassan
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Cours d'analyse fonctionnelle, Daniel Li
-
Analyse complexe pour la Licence 3, Tauvel
-
Elements d'analyse réelle
, Rombaldi
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1 = f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Cours de mathématiques, Tome 3 : Compléments d'analyse, Arnaudiès, Fraysse
-
Oraux X-ENS Analyse 1
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Analyse
, Gourdon
-
Cours d'analyse
, Pommelet
-
Elements d'analyse réelle
, Rombaldi
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
265 : Exemples d'études et d'applications de fonctions usuelles et spéciales.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Analyse
, Gourdon
-
Elements d'analyse réelle
, Rombaldi
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Analyse
, Gourdon
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours d'analyse fonctionnelle, Daniel Li
-
Fichier :
102 : Groupe des nombres complexes de module 1. Racines de l’unité. Applications.
-
Leçon :
-
Remarque :
Référence supplémentaire: Algèbre et géométrie: CAPES et Agrégation : Pierre Burg
J'avais initialement ajouté le paragraphe sur les angles orientés, non orientés, mesure principale et écart angulaire pour combler le vide laissé par l'absence de caractères, mais finalement la leçon est déjà assez longue sans ça (on peut donc enlever les items 40 à 44).
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
221 : Equations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
Plan un peu court.
-
Références :
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1 = f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
235 : Problèmes d’interversion en analyse.
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :
265 : Exemples d’études et d’applications de fonctions usuelles et spéciales.
-
Leçon :
-
Références :
-
Analyse complexe pour la Licence 3, Tauvel
-
Elements d'analyse réelle
, Rombaldi
-
Analyse
, Gourdon
-
Objectif Agrégation, Beck, Malick, Peyré
-
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer
-
Les fonctions spéciales vues par les problèmes, 517.5 , Groux, Soulat
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Calcul Intégral
, Faraut
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Remarque :
Scan un peu flou désolé.
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
253 : Utilisation de la notion de convexité en analyse.
148 : Exemples de décompositions de matrices. Applications.
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
Plan réalisé durant un oral blanc de fin d'année (j'avais préparé la leçon durant l'année, quand même). On peut aller bien plus loin, mais l'exemple 37 est déjà une porte ouverte à bien trop de questions d'analyse spectrale… (cf. plan de EWna)
L'application 30 est un exemple en lien avec un de mes devs pour une autre leçon, il est assez drôle de recaser ainsi du savoir, pour de potentielles questions à l'oral, surtout pour une leçon d'exemples comme celle-ci.
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
155 : Exponentielle de matrices. Applications.
228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
181 : Convexité dans Rn. Applications en algèbre et en géométrie.
127 : Exemples de nombres remarquables. Exemples d'anneaux de nombres remarquables. Applications.
-
Leçon :
-
Remarque :
C'est la toute dernière leçon que j'ai faite.
La partie sur les nombres décimaux est assez (peut-être trop ?) longue, mais j'avais travaillé les démonstrations. Je pense que c'est ce qu'il faut faire si on choisit de s'étendre autant sur ce sujet.
Je doute un peu de la pertinence des carrés dans $\mathbb{F}_q$ dans cette leçon... C'était un sujet que je maîtrisais bien donc je le mettais partout où je pouvais le mettre :)
Les constructions géométriques à la règle et au compas me semblent être un bon investissement à faire pendant l'année (au moins pour les leçons 125,127,191)
-
Références :
-
Fichier :
127 : Exemples de nombres remarquables. Exemples d'anneaux de nombres remarquables. Applications.
-
Leçon :
-
Remarque :
Cette leçon est nouvelle donc on ne connaît pas encore exactement les attentes du jury mais les anneaux de la forme Z[w] et les nombres algébriques semblent indispensables. Parler du corps des nombres constructibles peut être un bon investissement car ce n'est pas très difficile et on peut en parler dans plusieurs autres leçons.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.
-
Leçon :
-
Remarque :
/!\ Après coup, j'ai modifié la partie I-2) pour ne parler que de Stone-Weierstrass : voir la partie consacrée à ce sujet dans le Hirsch-Lacombe. En DEV 1, je traite donc le théorème de Stone-Weierstrass et non pas Bernstein et Weierstrass. Cela m'a permis de ne pas utiliser le Zuily-Queffelec pour cette leçon (je n'aime pas du tout ce livre).
Sinon voilà, je pense que tout y est à peu près : formules de Taylor, résultats de densité, convolution, approximation de l'unité, séries de Fourier... On peut sûrement penser à d'autres choses.
Il faut savoir motiver l'intérêt d'approcher une fonction par des fonctions régulières : en fonction de comment on fait une telle approximation, on va pouvoir prolonger des propriétés propres à des fonctions "lisses" à des fonctions plus "sauvages" comme des fonctions $L^p$ par exemple.
-
Références :
-
Fichier :
218 : Formules de Taylor. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon n'est franchement pas cool... Au premier abord, je trouve qu'on a du mal à voir ce qu'on va bien pouvoir mettre dedans et puis en fouillant le Rombaldi Analyse réelle et le Gourdon, on trouve tant bien que mal des choses... N'étant pas très bon en calcul, je n'aurais pas aimé tomber dessus le jour J...
Le plus dur est de trouver des développements... La façon dont j'ai tourné la démo du TCL (et surtout les lemmes préliminaires) permet de bien justifier le DEV1 pour cette leçon, mais le DEV2 est vraiment bof... On utilise juste à 2 reprises Taylor-Lagrange à l'ordre 2...
Il faut penser à parler des développements en série entière, ça permet de remplir la leçon... Et d'amener le jury vers des questions pas trop déconcertantes je pense...
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est plutôt cool à faire, elle permet de réviser pas mal de choses : compacité, convexité, techniques d'optimisation... J'ai oublié de mettre en application du théorème des extrema liés la différentielle du det et le théorème donnant les matrices minimisant la norme sur $\text{SL}_n(\mathbb{R})$ (que je fais en DEV dans d'autres leçons). Une autre jolie application du théorème des extrema liés est la suivante :
Soit $(E,(.|.))$ un espace euclidien et $u$ un endomorphisme auto-adjoint de $E$. Alors, la quantité : $\lambda=\text{sup}_{\|x\|=1} (u(x)|x) $ est valeur propre de $u$.
J'ai mis la méthode de Newton car le rapport du jury en parlait, mais je ne suis pas sûr qu'il s'agissait de cette méthode de Newton là... Ceci dit, elle se justifie quand même dans cette leçon.
On peut je pense approfondir la partie sur la méthode du gradient. On trouve de jolis dessins explicatifs dans le Beck.
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon paraît facile mais en réalité elle me faisait peur... En effet, comme c'est une leçon niveau première année, le jury peut s'attendre à beaucoup de recul sur ces notions et poser des exos assez avancés... En plus, je trouve que les notions de limsup et liminf ne sont pas très faciles, il faut d'ailleurs bien travailler les démonstrations sur ce sujet.
J'ai choisi de parler de vitesse et d'accélération de convergence car je ne connaissais pas avant de faire cette leçon, ça m'a permis d'apprendre des choses. On peut aussi parler de suites équiréparties...
Mon DEV1 n'a pas de référence, mais il y a la méthode générale pour étudier une suite récurrente dans le Bernis, et il suffit de l'appliquer à Arctan.
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
Cette leçon est l'une des plus difficiles en analyse, si ce n'est LA plus difficile. La difficulté provient vraiment du fait que la leçon s'appelle "Exemples de..." et que dans les références, on ne trouve pas 50000 exemples...
Tant bien que mal avec le Gourdon et le Rombaldi d'analyse réelle, on peut faire quelque chose de potable...
Je pense que mes développements rentrent bien dans la leçon, mais le plus effrayant ce sont les questions du jury qui peuvent être très vite calculatoires...
Il faut mettre Taylor-Young et les développements limités, la partie III-3) est indispensable, parce que les DA servent souvent à ça...
On pourrait aussi éventuellement parler de vitesse et d'accélération de convergence.
Le prof qui a encadré la leçon nous a mis en garde sur une chose importante : un équivalent n'est PAS un développement asymptotique. A la base, j'avais mis la méthode de Newton en développement, mais à cause de cette remarque je ne pouvais plus la mettre... J'ai donc mis la formule d'Euler-Maclaurin qui demande un certain travail sur les polynômes de Bernoulli (en plus c'est que du calcul...) mais ça se recase dans la 230 et c'est bien connaître les polynômes de Bernoulli
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.
218 : Formules de Taylor. Exemples et applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
/!\ Après coup, j'ai remplacé le DEV1 par le théorème de Stone-Weierstrass ! Voir la partie du Hirsch-Lacombe qui lui est consacré. Pour le justifier dans cette leçon, il faut dire qu'on est conscient qu'on dépasse le cadre réel en se plaçant sur un espace métrique compact, mais que c'est tout de même un théorème qu'on utilise souvent dans le cadre réel et qui permet d'établir des résultats de densité intéressants : densité des polynômes, des polynômes trigonométriques, des fonctions lipschitziennes, des fonctions affines par morceaux...
Cette leçon est "facile" donc je pense qu'il faut s'attendre à des questions assez poussées du jury : étude de fonctions spéciales, et surtout exemples et contre-exemples (fonction continue nulle part dérivable, fonction discontinue partout sauf en un point, fonction dérivable de dérivée non continue...) Le Hauchecorne fait assez bien ce travail.
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
Mon plan est très simple mais efficace (et facile à retenir !) La difficulté de cette leçon repose sur les démonstrations des résultats de convexité que je trouve assez difficiles contrairement à d'autres démonstrations. C'est souvent une utilisation "futée" de l'inégalité des pentes.
L'étude de la convexité se motive notamment par les inégalités qu'elle produit, et des résultats de passage du local au global.
Il faut savoir faire le lien entre ensemble convexe et fonction convexe : c'est l'épigraphe ! Il faut aussi absolument accompagner cette leçon d'une annexe avec des dessins, dans la mienne il n'y en a peut-être pas assez...
Je me dis aussi qu'au vu du titre de la leçon, il faut savoir faire un lien entre les fonctions monotones et les fonctions convexe ; je pense qu'une bonne réponse à cette question peut se trouver dans le cadre des fonctions régulières...
J'ai mis le processus de Galton-Watson car il se recase assez bien, on peut orienter ce qu'on démontre soit vers les probas soit vers la convexité (ou les deux si on va assez vite). Cependant, il me semble que le jury en a un peu marre de voir ce développement, donc si vous trouvez aussi bien ou mieux, n'hésitez pas ! Ce développement se trouve dans le Delmas, Modèle Aléatoires (je ne le trouve pas sur le site)
-
Références :
-
Fichier :
244 : Exemples d'études et d'applcations de fonctions usuelles et spéciales.
253 : Utilisation de la notion de convexité en analyse.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
La difficulté de cette leçon repose sur les démonstrations des résultats de convexité qui sont assez difficiles (c'est souvent une utilisation futée de l'inégalité des pentes)...
L'étude de la convexité se motive notamment par les inégalités qu'elle produit, et des résultats de passage du local au global. Il faut aussi absolument accompagner cette leçon avec des dessins en annexe pour illustrer les différentes situations.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.
-
Leçon :
-
Remarque :
Cette leçon n'est pas des plus faciles à travailler... Du moins selon moi car je ne suis pas très doué en calcul...
Sinon les choses se trouvent plutôt bien dans le Gourdon pour les méthodes directes, le Briane-Pagès pour les méthodes indirectes (ou le Li Intégration selon les préférences)
J'ai mis quelques exemples quand même, mais peut-être pas assez... C'est ça aussi la difficulté des leçons "illustrer par des exemples..." ou "exemples de...", c'est qu'on sait qu'on doit mettre des exemples mais pas à quel point...
Il me semble important de parler un peu de calcul approché. On peut même en parler plus que cela, mais je suis moyennement à l'aise avec l'analyse numérique donc j'ai mis le strict minimum. C'est bien de parler de Monte-Carlo je pense, même si on ne fait pas l'option A, c'est assez facile à comprendre (attention, avec Monte-Carlo, il faut penser à donner un intervalle de confiance !!!)
En DEV1, j'ai mis l'étude de la fonction Gamma, qui fonctionne, mais je pense qu'on peut mettre à la place l'injectivité de la transformée de Fourier avec le calcul de la TF d'une Gaussienne et la formule d'échange, qui rentrerait peut-être mieux... C'est peut-être ce que j'aurais fait si j'étais tombé dessus le jour J.
/!\ Après coup, j'ai légèrement modifié mon DEV2, je ne calculais pas cette intégrale mais une intégrale plus sophistiquée : $I=\int\limits_{0}^{+\infty} \frac{t^n}{1+t^{\alpha}}dt$ pour $n>\alpha+1>0$ par la même méthode (avec le théorème des résidus et un bon chemin... Il est dans le Tauvel). Il faut vraiment beaucoup s'entraîner sur un tel développement car c'est beaucoup de calcul et le jour J avec le stress et le temps limité, on peut vite s'embourber.
Même si on ne fait pas un DEV qui utilise la méthode des résidus dans cette leçon, je conseillerais de bien réviser cette méthode pour cette leçon, je pense que le jury demandera forcément de calculer une intégrale de cette manière... On peut aussi rajouter dans le plan la formule et le théorème de Cauchy que j'ai oubliés !
Finalement, je n'utilise pas le Queffelec d'analyse complexe dans cette leçon.
-
Références :
-
Fichier :
244 : Exemples d'études et d'applcations de fonctions usuelles et spéciales.
-
Leçon :
-
Remarque :
J'ai mis beaucoup de temps à trouver un plan logique et bien construit pour cette leçon, cela a été fait en collaboration avec Tintin, et je pense qu'il est plutôt pas mal. On peut se dire que parler des fonctions circulaires avant l'exponentielle complexe n'est pas possible, mais en fait si, c'est d'ailleurs comme ça qu'on faisait en Sup, on montrait que cos et sin étaient dérivables en utilisant uniquement le cercle trigonométrique. Ceci soulève une remarque importante : selon l'ordre avec lequel on choisit de mettre les notions, il faut bien s'assurer qu'il n'y a pas d'incohérence, pas de "serpent qui se mord la queue", et qu'on sait à peu près tout démontrer dans cet ordre-là.
C'est pas mal de bosser la fonction Gamma en profondeur, de la définition jusqu'au tracé du graphe (qu'il faut savoir faire si on traite la fonction Gamma en DEV) en passant par son lien avec la fonction Beta (le plus rapide est de passer par la convolution).
Etudier la fonction zeta est aussi possible en DEV, la majorité des résultats se trouve dans le Gourdon, mais on peut approfondir avec le Zuily-Queffelec (même si personnellement je déconseillerais d'utiliser ce livre).
On peut étudier des fonctions encore plus sophistiquées, je pense à la fonction Digamma... On peut aussi s'intéresser au prolongement méromorphe de Gamma...
N'hésitez pas à tracer des graphes en annexe, j'aurais d'ailleurs dû ajouter celui de la fonction Gamma, les dessins sont toujours appréciés du jury.
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Elements d'analyse réelle
, Rombaldi
-
Cours de mathématiques, Tome 2 : Analyse, Arnaudiès, Fraysse
-
Analyse
, Gourdon
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Cette leçon est un quasi copier-coller de ma leçon 229, en remplaçant juste le I. En vrai, je pense que ça passe, il faut juste bien motiver tout ça dans les 6 minutes : comme je l'ai dit pour la 229, la convexité est utile pour établir des inégalités intéressantes et étendre des résultats locaux au global (par exemple sur l'optimisation).
La partie convexité en analyse complexe est un peu bof... On peut la virer je pense, mais ça donne au moins une application en plus...
Je suis resté très basique car je trouve la convexité difficile, mais le rapport du jury propose plein de pistes d'approfondissement.
Pour Galton-Watson, il faut bien justifier en quoi la convexité intervient dans les démonstrations. J'ai pris ce développement dans le livre de Delmas, Modèles aléatoires, que je ne trouve pas sur le site.
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.
-
Leçon :
-
Remarque :
Il faut que les théorèmes classiques de continuité, dérivabilité, holomorphie sous l'intégrale apparaissent et soient accompagnés d'exemples. Il est pertinent de développer la convolution, les approximations de l'unité et la transformée de Fourier dans L^1(R). Les probabilités et l'analyse complexe peuvent faire de bonnes applications.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
244 : Exemples d'études et d'applcations de fonctions usuelles et spéciales.
-
Leçon :
-
Remarque :
Il faut faire attention lorsque l'on parle des fonctions trigonométriques de bien donner un sens logique en sachant comment démontrer les choses (par exemple si on commence la leçon avec les formules trigonométriques du cosinus et du sinus et que l'on dit ensuite que ces fonctions sont dérivables alors il faut faire la démonstration avec ces formules trigonométriques et il ne faut surtout pas dire que c'est une série entière) : c'est cela qui rend la leçon difficile à faire...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse
, Gourdon
-
Elements d'analyse réelle
, Rombaldi
-
Mathématiques pour l'agrégation, Analyse et probabilités, Jean-Étienne Rombaldi
-
Tout-en-un MP/MP*, Claude Deschamps
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
La convexité est utile pour établir des inégalités intéressantes et étendre des résultats locaux au global (par exemple sur l'optimisation ou l'analyse complexe). Il faut tenter de donner le plus d'applications possibles dans divers domaines et dire où elle intervient.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
218 : Formules de Taylor. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime pas.
-
Références :