Utilisée dans les 37 versions de développements suivants :
Probabilité que deux nombres soient premiers entre eux
-
Développement :
-
Référence :
-
Fichier :
Topologie des classes de similitude
-
Développement :
-
Référence :
-
Fichier :
Topologie des classes de similitude
-
Développement :
-
Référence :
-
Fichier :
Dimension du commutant
-
Développement :
-
Référence :
-
Fichier :
Dimension du commutant
-
Développement :
-
Référence :
-
Fichier :
Théorème de Burnside
-
Développement :
-
Remarque :
Mis à jour le 27.04.17
-
Référence :
-
Fichier :
Décomposition de Dunford (version non algorithmique)
-
Développement :
-
Références :
-
Fichier :
Théorème d'Auerbach
-
Développement :
-
Référence :
-
Fichier :
Théorème de Burnside
-
Développement :
-
Référence :
-
Fichier :
Adhérence des racines de la matrice identité
-
Développement :
-
Référence :
-
Fichier :
Dimension du commutant
-
Développement :
-
Référence :
-
Fichier :
Chemin continu de projecteurs
Déterminant de Cauchy par deux méthodes
-
Développement :
-
Référence :
-
Fichier :
Topologie des classes de similitude
-
Développement :
-
Référence :
-
Fichier :
Dimension du commutant
-
Développement :
-
Remarque :
Pour la leçon 151, faire la version qui utilise l'invariance du rang par extension de corps (qui est par ailleurs selon moi plus simple à justifier). Pour la 162, la version systémique du FGN est très bien, à condition de savoir expliquer pourquoi la dimension de l'espace des solutions ne change pas par extension de corps.
Parmi les questions possibles:
Peut-on toujours prendre une extension sur laquelle A est trigonalisable ? Oui, sachez comment construire un corps de décomposition par récurrence. Je ne pense pas qu'il soit utilise de s'aventurer vers les clôtures algébriques et le théorème de Steinitz.
Les histoires de cyclicité, la condition sur l'égalité des polynômes minimal et caractéristique, du coup savoir un peu parler du polynôme minimal ponctuel, ...
-
Référence :
-
Fichier :
Générateurs de GL_n(K) et de SL_n(K)
Isomorphisme entre GLn(K) et GLm(L)
Théorème d'Auerbach
-
Développement :
-
Remarque :
/!\ Attention /!\
Ce n'est pas un développement. D'une part, ça peut être présenté en littéralement 5 minutes, d'autre part l'ajout de l'inégalité de Hadamard est totalement artificielle. Elle n'est même pas utile pour prouver le théorème ! C'est juste que le FGN traite d'abord le cas euclidien (dans lequel l'inégalité de Hadamard s'applique) pour se donner une idée de la marche à suivre, mais la démonstration en elle-même est très courte et ne l'utilise pas.
Oraux X-ENS Algèbre 2 (2e version) p11
Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
-
Référence :
-
Fichier :
Morphismes continus du cercle dans GLn(R)
-
Développement :
-
Référence :
-
Fichier :
Théorème de Perron-Frobenius pour les matrices stochastiques irréductibles
Théorème de Burnside
-
Développement :
-
Référence :
-
Fichier :
Théorème de Burnside
-
Développement :
-
Référence :
-
Fichier :
Morphismes continus du cercle dans GLn(R)
-
Développement :
-
Référence :
-
Fichier :
Localisation des valeurs propres
Morphismes continus du cercle dans GLn(R)
Matrices à coefficients dans Z/nZ
-
Développement :
-
Références :
Localisation des valeurs propres
-
Développement :
-
Remarque :
*Mes développements n’ont pas été pensés pour être partagés au départ, vous excuserez mon écriture et mes notations un peu brouillonnes. Soyez vigilants sur les coquilles/erreurs possibles et critiques sur ce que vous lisez. N’hésitez pas à me contacter pour des clarifications.
*La plupart de mes dévs contiennent un plan et un rappel des énoncés, pour être au clair sur ce qu’on a à disposition et ce qu’on veut faire.
*Les recasages inscrits sur le document sont les numéros de 2023/2024.
-
Référence :
-
Fichier :
Générateurs de GL_n(K) et de SL_n(K)
-
Développement :
-
Remarque :
*Mes développements n’ont pas été pensés pour être partagés au départ, vous excuserez mon écriture et mes notations un peu brouillonnes. Soyez vigilants sur les coquilles/erreurs possibles et critiques sur ce que vous lisez. N’hésitez pas à me contacter pour des clarifications.
*La plupart de mes dévs contiennent un plan et un rappel des énoncés, pour être au clair sur ce qu’on a à disposition et ce qu’on veut faire.
*Les recasages inscrits sur le document sont les numéros de 2023/2024.
-
Référence :
-
Fichier :
Dual de M_n(K)
-
Développement :
-
Remarque :
Si le développement est un peu court, on peut rajouter un ou deux résultats supplémentaires.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
Critère de nilpotence par la trace et théorème de Burnside
Dual de M_n(K)
-
Développement :
-
Remarque :
J'ai rajouté ce développement à ma liste un peu en catastrophe à la fin de l'année car le 2e que j'avais pris pour la 159 me semblait impossible à maîtriser parfaitement (Krein-Millman)...
Il est très bien, très facile, efficace, et aboutit à un joli résultat. Comme le dit Tintin, il faut bien prendre son temps ou bien rajouter un autre résultat derrière.
-
Références :
-
Fichier :
Théorème de Perron-Frobenius pour les matrices stochastiques irréductibles
Générateurs de Gl_n(K) et Sl_n(K) et application à la connexité
-
Développement :
-
Remarque :
Mes documents sont longs, déjà parce que je parle vite (donc il faut beaucoup de contenus), que j'écris gros, et que j'aime bien comprendre dans les détails, mais aussi et surtout parce qu'il y a beaucoup de remarques/infos à la fin, pour essayer d'être capable de répondre au max de questions liées au dev !
Evidemment, il est fort possible qu'il y ait des coquilles de ci de là, n'hésitez pas à me les signaler !
(Bon courage !)
-
Références :
-
Fichier :
Simplicité de SO_3(R)
-
Développement :
-
Remarque :
Pas si simple que ça.
-
Référence :
-
Fichier :
Utilisée dans les 33 versions de leçons suivantes :
152 : Déterminant. Exemples et applications.
-
Leçon :
-
Références :
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours de mathématiques, tome 1 : Algèbre, Ramis, Deschamps, Odoux
-
Analyse
, Gourdon
-
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Elimination. Le cas d'une variable., Apery, Jouanolou
-
Fichier :
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Références :
-
Fichier :
102 : Groupe des nombres complexes de module 1. Sous-groupes des racines de l’unité. Applications.
-
Leçon :
-
Références :
-
Fichier :
108 : Exemples de parties génératrices d’un groupe. Applications.
-
Leçon :
-
Références :
-
Cours d'algèbre
, Perrin
-
Éléments de théorie des groupes, Calais
-
Algèbre
, Gourdon
-
Théorie des Groupes, Félix Ulmer
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Géométrie, Audin
-
Fichier :
153 : Polynômes d’endomorphisme en dimension finie. Réduction d’un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Références :
-
Fichier :
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
162 : Systèmes d’équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Références :
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Histoires hédonistes de groupes et géométries, Tome 2, Caldero, Germoni
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Algèbre
, Gourdon
-
Algèbre linéaire
, Grifone
-
Cours d'algèbre
, Perrin
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Fichier :
153 : Polynômes d’endomorphisme en dimension finie. Réduction d’un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Références :
-
Fichier :
144 : Racines d’un polynôme. Fonctions symétriques élémentaires. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Mathématiques pour l'agrégation: Algèbre et géométrie : Jean Etienne Rombaldi
[Per] Cours d'algèbre : Perrin
[Goz] Théorie de Galois : Gozard
[FGN Al1] Oraux X-ENS Algèbre 1 : Francinou, Gianella, Nicolas
[FGN An2] Oraux X-ENS Analyse 2 : Francinou, Gianella, Nicolas
[FGN Al2] Oraux X-ENS Algèbre 2 : Francinou, Gianella, Nicolas
-
Références :
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Cours d'algèbre
, Perrin
-
Théorie de Galois, Gozard
-
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Fichier :
102 : Groupe des nombres complexes de module 1 . Sous-groupes des racines de l'unité. Applications.
-
Leçon :
-
Références :
-
Fichier :
104 : Groupes abéliens et non abéliens finis. Exemples et applications.
144 : Racines d’un polynôme. Fonctions symétriques élémentaires. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
152 : Déterminant. Exemples et applications.
-
Leçon :
-
Références :
-
Cours de Mathématiques - 1 Algèbre, Arnaudiès - Fraysse
-
Objectif Agrégation, Beck, Malick, Peyré
-
Algèbre linéaire
, Cognet
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Petit guide de calcul différentiel
, Rouvière
-
Algèbre
, Tauvel
-
Fichier :
155 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Références :
-
Fichier :
106 : Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.
-
Leçon :
-
Références :
-
Fichier :
204 : Connexité. Exemples et applications.
-
Leçon :
-
Références :
-
Topologie générale et espaces normés
, Hage Hassan
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Topologie
, Queffelec
-
Analyse complexe pour la Licence 3, Tauvel
-
Un max de maths
, Zavidovique
-
Fichier :
267 : Exemples d’utilisation de courbes en dimension 2 ou supérieure.
-
Leçon :
-
Remarque :
Ébauche de plan, que je publie car j'ai passé pas mal de temps dessus et je l'aimais beaucoup (je le réécrirai peut-être un jour).
La première partie vient notamment d'un très agréable cours de géométrie différentielle de
Sigmundur Gudmundsson (enseignant à l'université de Lund, Suède), malheureusement non édité. Je n'ai pas trouvé de référence claire en français sur la géométrie des courbes, qui ne fasse pas des centaines de pages (je pense à vous, Berger et Gostiaux).
Désolé de cette liste de références à la Prévert !
-
Références :
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Équations différentielles, Florent Berthelin
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Introduction aux variétés différentielles
, Lafontaine
-
Cours de mathématiques, Tome 3, Géométrie et cinématique, Lelong-Ferrand, Arnaudiès
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Fourier Analysis, Stein, Shakarchi
-
Analyse
, Gourdon
-
Topologie
, Queffelec
-
Nouvelles histoires hédonistes de groupes et géométries, P. Caldero, J. Germoni
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Analyse complexe pour la Licence 3, Tauvel
-
Fichier :
106 : Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.
108 : Exemples de parties génératrices d'un groupe. Applications.
144 : Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications.
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
153 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d'éléments propres. Applications.
154 : Exemples de décompositions de matrices. Applications.
155 : Exponentielle de matrices. Applications.
162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
102 : Groupe des nombres complexes de module 1. Racines de l'unité. Applications.
-
Leçon :
-
Remarque :
Cette leçon est difficile à faire car il y a beaucoup de choses à dire et on peut partir dans beaucoup de directions mais il n'y a pas une référence privilégiée qui s'attarde sur le sujet et donne des applications poussées dans divers domaines variés... Les livres de classe prépa peuvent aider pour bien poser les bases et rappeler toutes les définitions et propriétés de base.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Analyse complexe pour la Licence 3, Tauvel
-
Mathématiques pour l'agrégation, Analyse et probabilités, Jean-Étienne Rombaldi
-
Cours d'algèbre
, Perrin
-
Algèbre
, Gourdon
-
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Fichier :
104 : Groupes finis. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon ressemble beaucoup à celle juste au dessus (étrange...) !
On peut faire cette leçon en très (très !) grande majorité avec le Berhuy. Il faut éviter de faire énormément de rappels et il est préférable de donner beaucoup d'exemples et de les diversifier (par exemple en consacrant un petit bout de la leçon aux sous-groupes finis du groupe linéaire ou de ses sous-groupes).
La théorie de Sylow n'est pas obligatoire non plus (car pas au programme) mais je trouve que c'est un très bon investissement à faire durant l'année.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Carnet de voyage en Analystan, Caldero
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Cours d'algèbre
, Perrin
-
Théorie des groupes (bis), Delcourt
-
Algèbre et géométrie
, Combes
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Fichier :
106 : Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.
-
Leçon :
-
Remarque :
Il faut se concentrer dans cette leçon sur l'aspect algébrique du groupe linéaire et l'étudier en tant que groupe en parlant de générateurs, sous-groupes remarquables, actions de groupes, etc. On peut également pousser un peu plus les choses avec les groupes projectifs et les isomorphismes exceptionnels. Il faut également garder une petite place pour parler des propriétés topologiques de cet espace (connexité, sous-groupes compacts, ...).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Cours d'algèbre
, Perrin
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Topologie générale et espaces normés
, Hage Hassan
-
Fichier :
108 : Exemples de parties génératrices d'un groupe. Applications.
-
Leçon :
-
Remarque :
Tous les groupes dont on parle dans cette leçon doivent absolument être présentés sous l'angle de leurs générateurs et essayer de donner le plus d'exemples possibles au aussi variés que possibles : groupes cycliques, groupe symétrique, groupe diédral, groupe linéaire, groupe orthogonal, etc. Les groupes d'isométries des solides platoniciens sont également un bon investissement à faire pendant l'année.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Cours d'algèbre
, Perrin
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Algèbre et géométrie
, Combes
-
Théorie des groupes (bis), Delcourt
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Géométrie, Audin
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Fichier :
149 : Déterminant. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est assez vaste et le Deschamps de MPSI (ou de première année pour les nouvelles versions) fait assez l'affaire car donne toutes les définitions et propriétés de base ! Bien qu'il s'agisse d'une leçon d'algèbre il peut être bien de parler des applications du déterminant en analyse.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Algèbre et probabilités, Gourdon
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Tout-en-un MP/MP*, Claude Deschamps
-
Analyse
, Gourdon
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Petit guide de calcul différentiel
, Rouvière
-
Fichier :
156 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Remarque :
Se pencher un peu sur la réduction de Jordan par les noyaux itérés vaut le coup car c'est un peu la "finalité" de cette théorie. Les démonstrations sont un peu compliquées donc je pense qu'avoir les idées suffit, par contre il faut savoir jordaniser une matrice en pratique !
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Tout-en-un MP/MP*, Claude Deschamps
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Objectif Agrégation, Beck, Malick, Peyré
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Fichier :
159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est assez difficile car la dualité n'est plus très abordée en CPGE ni à la fac donc il faut se mettre à niveau. Concevoir cette leçon est donc une tâche assez difficile étant donné qu'il faut quasiment découvrir un pan entier d'algèbre et prendre du recul le plus vite possible.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Algèbre et probabilités, Gourdon
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Analyse
, Gourdon
-
Fichier :
204 : Connexité. Exemples d'applications.