Cours de mathématiques, topologie et éléments d'analyse Tome 3

Ramis, Deschamps, Odoux

Utilisée dans les 0 développements suivants :


Utilisée dans les 3 leçons suivantes :

229 (2025) Fonctions monotones. Fonctions convexes. Exemples et applications.
253 (2025) Utilisation de la notion de convexité en analyse.
244 (2024) Exemples d'études et d'applcations de fonctions usuelles et spéciales.

Utilisée dans les 0 versions de développements suivants :


Utilisée dans les 15 versions de leçons suivantes :

  • Leçon :
  • Remarque :
    Mon plan est très simple mais efficace (et facile à retenir !) La difficulté de cette leçon repose sur les démonstrations des résultats de convexité que je trouve assez difficiles contrairement à d'autres démonstrations. C'est souvent une utilisation "futée" de l'inégalité des pentes.
    L'étude de la convexité se motive notamment par les inégalités qu'elle produit, et des résultats de passage du local au global.
    Il faut savoir faire le lien entre ensemble convexe et fonction convexe : c'est l'épigraphe ! Il faut aussi absolument accompagner cette leçon d'une annexe avec des dessins, dans la mienne il n'y en a peut-être pas assez...
    Je me dis aussi qu'au vu du titre de la leçon, il faut savoir faire un lien entre les fonctions monotones et les fonctions convexe ; je pense qu'une bonne réponse à cette question peut se trouver dans le cadre des fonctions régulières...
    J'ai mis le processus de Galton-Watson car il se recase assez bien, on peut orienter ce qu'on démontre soit vers les probas soit vers la convexité (ou les deux si on va assez vite). Cependant, il me semble que le jury en a un peu marre de voir ce développement, donc si vous trouvez aussi bien ou mieux, n'hésitez pas ! Ce développement se trouve dans le Delmas, Modèle Aléatoires (je ne le trouve pas sur le site)
  • Références :
  • Fichier :
  • Leçon :
  • Remarque :
    J'ai mis beaucoup de temps à trouver un plan logique et bien construit pour cette leçon, cela a été fait en collaboration avec Tintin, et je pense qu'il est plutôt pas mal. On peut se dire que parler des fonctions circulaires avant l'exponentielle complexe n'est pas possible, mais en fait si, c'est d'ailleurs comme ça qu'on faisait en Sup, on montrait que cos et sin étaient dérivables en utilisant uniquement le cercle trigonométrique. Ceci soulève une remarque importante : selon l'ordre avec lequel on choisit de mettre les notions, il faut bien s'assurer qu'il n'y a pas d'incohérence, pas de "serpent qui se mord la queue", et qu'on sait à peu près tout démontrer dans cet ordre-là.
    C'est pas mal de bosser la fonction Gamma en profondeur, de la définition jusqu'au tracé du graphe (qu'il faut savoir faire si on traite la fonction Gamma en DEV) en passant par son lien avec la fonction Beta (le plus rapide est de passer par la convolution).
    Etudier la fonction zeta est aussi possible en DEV, la majorité des résultats se trouve dans le Gourdon, mais on peut approfondir avec le Zuily-Queffelec (même si personnellement je déconseillerais d'utiliser ce livre).
    On peut étudier des fonctions encore plus sophistiquées, je pense à la fonction Digamma... On peut aussi s'intéresser au prolongement méromorphe de Gamma...
    N'hésitez pas à tracer des graphes en annexe, j'aurais d'ailleurs dû ajouter celui de la fonction Gamma, les dessins sont toujours appréciés du jury.
  • Références :
  • Fichier :