Utilisée dans les 26 versions de développements suivants :
Générateurs de Gl_n(K) et Sl_n(K) et application à la connexité
-
Développement :
-
Remarque :
D'après moi pour les leçons : 108 et 162, peut-être plus utile pour la 162 car je ne trouve pas qu'il soit facile de trouver des développements pour celle-ci.
Les références pour chacune des démonstrations sont dans le document, mais il y a une coquille pour Gl_n(C), c'est l'application de R x ]0, 1[ -> C telle que t -> $\Psi_a$(t) qui est injective (pas [0,1] fermé !).
NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
J'écris assez mal également, toutes mes excuses.
-
Références :
-
Fichier :
Générateurs de O(E)
-
Développement :
-
Remarque :
D'après moi pour les leçons : 106, 108, 160 et 161.
Attention démontrer les générateurs de O(E) et de SO(E) est assez long. Pour être passé dessus en développement blanc : ne pas oublier le cas où u = id.
Le dessin (à faire au fur et à mesure) rend d'après moi la démonstration limpide.
Sans celui-ci, elle est indigeste.
NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
J'écris assez mal également, toutes mes excuses.
-
Référence :
-
Fichier :
Réduction de Jordan d'un endomorphisme nilpotent
-
Développement :
-
Remarque :
D'après moi pour les leçons : 151 et 157.
Attention aux notation du livre de G. Berhuy, ce qu'il appelle une cellule de Jordan est généralement appelé bloc de Jordan (il fait une distinction entre les deux).
NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
J'écris assez mal également, toutes mes excuses.
-
Référence :
-
Fichier :
Théorème de Sylow (version opération de groupes)
-
Développement :
-
Remarque :
D'après moi pour les leçons : 101 et 104.
Je ne démontre que 3 des 4 théorèmes de Sylow (celui avec l'argument de Frattini étant nettement plus difficile), donc le développement se retrouve être un peu court.
Rajouter la démonstration du théorème Cayley résout le problème.
NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
J'écris assez mal également, toutes mes excuses.
-
Référence :
-
Fichier :
Structure des groupes abéliens finis
-
Développement :
-
Remarque :
D'après moi pour les leçons : 102, 104, 107, 120 et très éventuellement 142 (pour la partie unicité).
C'est vraiment bien fait dans le livre de G. Berhuy (que je trouve remarquable à titre personnel), donc si vous cherchez une bonne source n'hésitez pas à y jeter un coup d'oeil.
Il est indispensable de savoir montrer que dans un groupe abélien fini, il existe un élément d'ordre l'exposant du groupe...
NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
J'écris assez mal également, toutes mes excuses.
-
Référence :
-
Fichier :
Simplicité du groupe alterné An
Théorème de Wedderburn
-
Développement :
-
Remarque :
Leçons 101, 102, 103, 123, 141, 144.
-
Référence :
-
Fichier :
Décomposition de Dunford (version non algorithmique)
Générateurs de GL_n(K) et de SL_n(K)
Probabilité que deux éléments commutent dans groupe
-
Développement :
-
Remarque :
Développement pouvant être fait en trois temps (que je n'ai pas mis dans l'ordre sur ma version) :
1) La probabilité p est majorée par 5/8 (cf Lesesvre);
2) Preuve de la formule de Burnside (cf n'importe quel livre d'algèbre faisant la preuve, je propose le Berhuy);
3) Application de la formule de Burnside pour montrer que p vaut le nombre de classe de conjugaisons divisé par le cardinal du groupe (pas de référence mais c'est facile).
Le Lesesvre propose un cas d'égalité avec le groupe diédral, que je ne traite pas.
Développement pouvant être utilisé dans les leçons 101, 103, 104 et 190.
-
Références :
-
Fichier :
Théorème de Dixon
-
Développement :
-
Remarque :
Développement pouvant être fait en trois temps (que je n'ai pas mis dans l'ordre sur ma version) :
1) La probabilité p est majorée par 5/8 (cf Lesesvre);
2) Preuve de la formule de Burnside (cf n'importe quel livre d'algèbre faisant la preuve, je propose le Berhuy);
3) Application de la formule de Burnside pour montrer que p vaut le nombre de classe de conjugaisons divisé par le cardinal du groupe (pas de référence mais c'est facile).
Le Lesesvre propose un cas d'égalité avec le groupe diédral, que je ne traite pas.
Développement pouvant être utilisé dans les leçons 101, 103, 104 et 190.
-
Références :
-
Fichier :
Théorème de Gauss (polygones constructibles)
-
Développement :
-
Remarque :
Un développement vraiment long et un peu compliqué, mais plutôt rentable et sympathique.
Niveau recasages : il faut faire attention à ceux proposés sur agreg-maths : par exemple, il passe parfaitement dans la 191, et pas vraiment en 122 (non non, l'histoire du polynôme minimal pour recaser le développement dans cette leçon est une arnaque pour moi...).
Attention à un recasage dans mon document : je mets "125 : Corps finis", mais c'est bel et bien "125 : Extensions de corps" qui convient. Je modifierai dans l'année, c'est une erreur de ma part.
Attention aux coquilles.
-
Référence :
-
Fichier :
Classification des groupes d'ordre p^2 et 2p
Le dénombrement des polynômes irréductibles unitaires sur un corps fini
Réduction de Jordan d'un endomorphisme nilpotent
-
Développement :
-
Remarque :
Version manuscrite, désolée pour l'écriture .
Au vu de mon niveau je préférais dans un premier temps me consacrer aux 2 premiers lemmes. Mais pour le mettre dans la leçon 148 il fallait le théorème sans quoi je trouvais le recassage abusé. Je n'avais pas eu le temps de me mettre au point avant les oraux, j'aurais improvisé si j'étais passé dessus.
Il se peut qu'il reste des coquilles, n'hésitez pas à me contacter au besoin.
-
Référence :
-
Fichier :
Algorithme de Berlekamp
-
Développement :
-
Références :
-
Fichier :
Exposant d'un groupe
-
Développement :
-
Remarque :
Si le développement est un peu court on peut rajouter en plus l'ordre de x^d pour x dans G d'ordre fini et d un entier naturel non nul.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Référence :
-
Fichier :
Théorème de Gauss-Wantzel
-
Développement :
-
Remarque :
Ce théorème n'a pas l'air d'utiliser d'outils sophistiqués mais il n'en est rien ! En effet, on utilise au tout début du développement qu'un nombre a est constructible si, et seulement si, le degré de l'extension L/Q avec L le corps de décomposition de a sur Q est une puissance de 2. Ce résultat est très puissant mais est assez difficile à démontrer : il faut utiliser le fait que l’extension est galoisienne pour en déduire que le groupe de Galois est un 2-groupe pour en déduire qu’il est résoluble (les p-groupes le sont de manière générale) puis conclure avec la correspondance de Galois. Pour la réciproque, il faut utiliser la clôture galoisienne pour montrer que l’extension C/Q est normale (avec C le corps des nombres constructibles à la règle non graduée et au compas) pour conclure grâce au théorème de l’élément primitif.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Référence :
-
Fichier :
Invariants de similitude (réduction de Frobenius)
-
Développement :
-
Remarque :
Gros document sur la réduction de Frobenius. En plus de la preuve du théorème, il y a des résultats sur le calcul pratique des invariants de similitudes mais aussi des applications de cette réduction pour l'étude du commutant et bicommutant.
Lien pour le document:
Voici une preuve du théorème des disques de Gershgorin topologiques. Elle utilise un résultat sur la continuité des racines d'un polynôme qui est aussi démontré sur le document. Pour que la preuve tienne en 15min pour en faire un développement il faut faire des choix sur ce qu'on démontre ou non.
Voici le lien pour le document:
https://perso.eleves.ens-rennes.fr/people/thomas.courant/Agr%C3%A9gation.html
-
Références :
-
Fichier :
Prolongement des caractères et classification des groupes abéliens finis
-
Développement :
-
Remarque :
Leçon: 102, 104, 120
Preuve de la classification des groupes abéliens finis en passant par les caractères. Preuve très sympa et intuitive mais il faut faire des choix sur ce que l'on présente pour tenir en 15min.
Le lien pour le document:
https://perso.eleves.ens-rennes.fr/people/thomas.courant/Agr%C3%A9gation.html
-
Référence :
-
Fichier :
Forme normale de Smith
-
Développement :
-
Remarque :
Mes documents sont longs, déjà parce que je parle vite (donc il faut beaucoup de contenus), que j'écris gros, et que j'aime bien comprendre dans les détails, mais aussi et surtout parce qu'il y a beaucoup de remarques/infos à la fin, pour essayer d'être capable de répondre au max de questions liées au dev !
Evidemment, il est fort possible qu'il y ait des coquilles de ci de là, n'hésitez pas à me les signaler !
(Bon courage !)
-
Références :
-
Fichier :
Générateurs de Gl_n(K) et Sl_n(K) et application à la connexité
-
Développement :
-
Remarque :
Mes documents sont longs, déjà parce que je parle vite (donc il faut beaucoup de contenus), que j'écris gros, et que j'aime bien comprendre dans les détails, mais aussi et surtout parce qu'il y a beaucoup de remarques/infos à la fin, pour essayer d'être capable de répondre au max de questions liées au dev !
Evidemment, il est fort possible qu'il y ait des coquilles de ci de là, n'hésitez pas à me les signaler !
(Bon courage !)
-
Références :
-
Fichier :
Simplicité du groupe alterné An
-
Développement :
-
Remarque :
Mes documents sont longs, déjà parce que je parle vite (donc il faut beaucoup de contenus), que j'écris gros, et que j'aime bien comprendre dans les détails, mais aussi et surtout parce qu'il y a beaucoup de remarques/infos à la fin, pour essayer d'être capable de répondre au max de questions liées au dev !
Evidemment, il est fort possible qu'il y ait des coquilles de ci de là, n'hésitez pas à me les signaler !
(Bon courage !)
-
Références :
-
Fichier :
Théorème de Sylow (version opération de groupes)
Utilisée dans les 88 versions de leçons suivantes :
120 : Anneaux Z/nZ. Applications.
-
Leçon :
-
Remarque :
J'ai changé les developpements en cours d'année : j'aurai finalement mis Dirichlet faible et le théorème de Sophie Germain (que j'aurai rajouté après les tests de primalité), les refs ne sont pas notées car c'est une version faite en oral blanc mais tout se trouve assez facilement : voir Gozard pour les polynomes cyclotomiques, Berhuy pour le théorème Chinois et les éléments remarquables, Gourdon pour les tests de primalité, Combes pour le théorème de structure et le reste se trouve facilement dans Perrin et Rombaldi
-
Références :
-
Fichier :
104 : Groupes abéliens et non abéliens finis. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
157 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Remarque :
J'ai oublié de mettre les références à la fin du plan, mais la grande majorité vient du livre de G. Berhuy : Algèbre, le grand combat.
Mes excuses pour l'écriture, et attention aux coquilles...
-
Référence :
-
Fichier :
155 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Références :
-
Fichier :
105 : Groupe des permutations d'un ensemble fini. Applications.
-
Leçon :
-
Références :
-
Fichier :
104 : Groupes finis. Exemples et applications.
104 : Groupes finis. Exemples et applications.
105 : Groupe des permutations d’un ensemble fini. Applications.
142 : PGCD et PPCM, algorithmes de calcul. Applications.
154 : Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.
-
Leçon :
-
Références :
-
Fichier :
156 : Exponentielle de matrices. Applications.
104 : Groupes finis. Exemples et applications.
-
Leçon :
-
Remarque :
Leçon sur laquelle je suis passé en début d'année. Possibilité d'une annexe graphique contenant des graphes de caractères (cf. von zur Gathen, Gerhard, Modern Computer Algebra), et les isométries du cube.
Si j'étais passé sur cette leçon à l'oral, j'aurais parlé à la fin des isométries du cube, qui auraient constitué mon second développement (au lieu de $A_n$ simple pour $n \geq 5$).
-
Références :
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Algèbre
, Gourdon
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Cours d'algèbre
, Perrin
-
Algèbre discrète de la transformée de Fourier
, Peyré
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Fourier Analysis, Stein, Shakarchi
-
Théorie des Groupes, Félix Ulmer
-
Fichier :
142 : PGCD et PPCM, algorithmes de calcul. Applications.
-
Leçon :
-
Remarque :
Ébauche de plan non rédigé en intégralité, mais que je partage quand même car j'aime beaucoup la structure de mon plan, notamment la deuxième partie. Mes développements ont été l'algorithme de Berlekamp et le théorème de Liouville (cf. EWna).
Des exemples, juste énoncés, d'éléments ayant un pgcd mais pas de ppcm, ou pas de pgcd, se trouvent dans
Berhuy. La preuve et plein d'autres belles infos sur les pgcd et ppcm se trouvent dans ce papier du culte Daniel Perrin :
Autour du ppcm et du pgcd
-
Références :
-
Objectif Agrégation, Beck, Malick, Peyré
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Cours d'algèbre
, Demazure
-
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas
-
Modern Computer Algebra, von zur Gathen, Gerhard
-
Cours d'algèbre
, Perrin
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Fichier :
103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Remarque :
C'est la version que j'ai présentée en oral blanc. J'ai mis les références utilisées (entre crochets) à chaque paragraphe. Quelques remarques :
-Il y a des choses de la partie I qui se placent mieux dans la partie II (tout ce qui concerne les applications linéaires : théorème du rang, équivalences bijectivité ssi surjuectivité ssi injectivité, etc);
-Si on a le temps, la place et l'envie, on peut aussi parler de dualité;
-L'algorithme de Berlekamp se place bien dans la sous-partie extension de corps - corps finis.
-
Références :
-
Fichier :
156 : Exponentielle de matrices. Applications.
-
Leçon :
-
Remarque :
C'est la version que j'ai présentée en oral blanc. Si j'étais tombée dessus à l'oral, je n'aurais pas choisi le développement sur Dunford. Le Berhuy fait tout le début, le Demailly sert pour la partie "équations différentielles".
-
Références :
-
Fichier :
101 : Groupe opérant sur un ensemble. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
104 : Groupes finis. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqué, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un licence 1
-
Références :
-
Fichier :
105 : Groupe des permutations d'un ensemble fini. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqué, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
108 : Exemples de parties génératrices d'un groupe. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
120 : Anneaux Z/nZ. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un licence 1
-
Références :
-
Fichier :
122 : Anneaux principaux. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un licence1
-
Références :
-
Fichier :
123 : Corps finis. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un Licence 1
-
Références :
-
Fichier :
141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un-licence
-
Références :
-
Fichier :
142 : PGCD et PPCM, algorithmes de calcul. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1= Tout-en-un licence 1
-
Références :
-
Fichier :
144 : Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
Tout-en-un licence 1
-
Références :
-
Fichier :
148 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
Tout-en-un licence 1
-
Références :
-
Fichier :
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
151 : Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
152 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
153 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d'éléments propres. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un licence
-
Références :
-
Fichier :
154 : Exemples de décompositions de matrices. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
155 : Exponentielle de matrices. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
156 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
158 : Endomorphismes remarquables d'un espace vectoriel euclidien (de dimension finie).
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
101 : Groupe opérant sur un ensemble. Exemples et applications.
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
152 : Endomorphismes diagonalisables en dimension finie.
154 : Exemples de décompositions de matrices. Applications.
156 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.
104 : Groupes finis. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est très calquée sur celle d'un ami grand fan de théorie des groupes ! Comme pour beaucoup de choses sur les groupes, tout est dans le Berhuy...
Si j'étais tombé sur celle-là le jour J, j'aurais très probablement enlevé la sous-partie sur les quaternions que je ne maîtrisais pas...
Je pense qu'il faut éviter de faire des rappels trop longs de généralités, d'actions de groupes et vite focus le plan sur les groupes finis (abéliens, non abéliens...)
La théorie de Sylow est hors-programme, mais je trouve que c'est un très bon investissement à faire durant l'année.
Dans le DEV 1, je rajoute 2 lemmes pour que ça tienne en 15 minutes : $\mathfrak{A}_n$ est engendré par les 3-cycles et ceux-ci sont tous conjugués dans $\mathfrak{A}_n$.
-
Références :
-
Fichier :
108 : Exemples de parties génératrices d'un groupe. Applications.
-
Leçon :
-
Remarque :
Tous les groupes dont on parle dans cette leçon doivent absolument être présentés sous l'angle de leurs générateurs (groupes cycliques, groupe symétrique, groupe diédral, groupe linéaire, groupe orthogonal...)
Les groupes d'isométries du tétraèdre et du cube sont à mon sens un bon investissement à faire pendant l'année.
Comme vous pouvez le constater, j'ai fortement réduit la partie "structure des groupes abéliens (de type) fini" car je n'étais pas du tout à l'aise là-dessus.... Si on en parle, il faut dans tous les cas savoir écrire un produit cartésien de groupes cycliques sous la forme du théorème.
-
Références :
-
Fichier :
121 : Nombres premiers. Applications.
-
Leçon :
-
Remarque :
Comme l'indique le rapport du jury 2024, cette leçon est très vaste et il faut faire des choix. C'est l'occasion de vraiment mettre des choses avec lesquelles on est à l'aise.
Il faut aussi se méfier du fait que lorsque cette leçon apparaît dans un tirage, elle est quasi systématiquement choisie par le candidat...
On n'est pas obligé de parler des nombres de Carmichael, mais le DEV se recase très bien dans 120 et 127
Les résultats sur la répartition des nombres premiers peuvent être admis sans problème (certaines des démonstrations étant vraiment atroces) par contre il faut s'attendre à des questions sur des cas particuliers du théorème de la progression arithmétique de Dirichlet.
La théorie de Sylow est hors programme, mais je trouve que c'est un bon investissement à faire durant l'année.
-
Références :
-
Fichier :
122 : Anneaux principaux. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon a été faite au tout début de l'année, le plan n'est peut-être pas des plus pertinents.
/!\ A la fin de l'année, j'ai remplacé le DEV 1 par les endomorphismes semi-simples ! Mais ça peut être bien d'avoir une idée de la démo de mon ancien DEV 1 sur cette leçon (voir le Francinou exos agreg algèbre 1), ça donne un exemple d'anneau principal plus sophistiqué que les habituels anneaux $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$...
/!\ J'ai aussi remplacé le DEV 2 par le théorème des deux carrés (voir ma leçon 127). On peut aussi bien sûr faire le théorème chinois + un exemple en DEV, j'ai choisi de ne pas le faire car j'avais un peu peur des calculs en DEV...
Il faut connaître les implications entre les types d'anneaux (euclidien, principal, factoriel) et des contre-exemples pour les implications réciproques.
-
Références :
-
Anneaux, corps, résultants, Ulmer, Félix
-
Cours d'algèbre
, Perrin
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Algèbre et géométrie
, Combes
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Exercices mathématiques
, Francinou, Gianella
-
Fichier :
123 : Corps finis. Applications.
-
Leçon :
-
Remarque :
Il faut savoir démontrer l'existence et l'unicité du corps à $q=p^n$ éléments et surtout construire par exemple $\mathbb{F}_4$ ou $\mathbb{F}_9$ explicitement en utilisant un polynôme irréductible. Il faut aussi savoir multiplier deux éléments dans un corps fini, trouver les inverses etc...
Pour la cyclicité du groupe multiplicatif des inversibles, j'ai choisi de le faire par l'exposant (comme ça je pouvais le remettre dans les leçons de groupes) mais ça peut se faire par d'autres moyens.
Il faut savoir justifier pourquoi il existe des polynômes irréductibles de tout degré à coefficients dans $\mathbb{F}_q$.
Le Francinou où se trouve le DEV 2 est celui qui s'appelle "Exercices de mathématiques pour l'agrégation, Algèbre 1"
-
Références :
-
Fichier :
142 : PGCD et PPCM, algorithmes de calcul. Applications.
-
Leçon :
-
Remarque :
Je n'aime vraiment pas cette leçon... Mais il fallait bien la faire car j'avais déjà une impasse sur la 181...
La partie sur les anneaux ressemble beaucoup à la leçon 122, et la leçon en elle-même ne me semble pas trop mal mais la partie II-2) me faisait très peur (il est pourtant fortement recommandé de parler de ça dans le rapport du jury) et surtout mes développements sont vraiment bof bof ...
Bref à consulter avec prudence !
-
Références :
-
Fichier :
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Remarque :
Je suis resté sur des choses relativement basiques pour cette leçon. Dans la sous-partie "endomorphismes remarquables diagonalisables", on peut ajouter les normaux et les symétriques si on a la place, on peut aussi remplacer les orthogonaux par les symétriques...
J'ai eu tendance à prendre trop de livres pour la réduction, il vaut mieux en choisir un ou deux une bonne fois pour toutes (genre Mansuy et Grifone)
Pour le développement sur la décomposition de Dunford, attention à la version que vous choisissez ! Si c'est l'une des deux qui sont dans le Gourdon, il faut prendre la deuxième (qui est celle qui figure dans cette leçon). En effet, une prof nous avait assuré que le jury n'aimait pas la première version. On peut aussi démontrer le lemme des noyaux pour aller vers les projecteurs spectraux (et recaser ainsi mieux dans PGCD-PPCM)
-
Références :
-
Fichier :
101 : Groupe opérant sur un ensemble. Exemples et applications.
-
Leçon :
-
Remarque :
Il faut mettre en avant d'un côté l'action d'un groupe sur un ensemble et d'un autre côté d'un groupe sur lui-même afin de dégager le plus de propriétés possibles et d'illustrer un maximum ces propriétés par des exemples variés dans divers domaines (algèbre linéaire/commutative, théorie des groupes, géométrie, ...).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
102 : Groupe des nombres complexes de module 1. Racines de l'unité. Applications.
-
Leçon :
-
Remarque :
Cette leçon est difficile à faire car il y a beaucoup de choses à dire et on peut partir dans beaucoup de directions mais il n'y a pas une référence privilégiée qui s'attarde sur le sujet et donne des applications poussées dans divers domaines variés... Les livres de classe prépa peuvent aider pour bien poser les bases et rappeler toutes les définitions et propriétés de base.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Analyse complexe pour la Licence 3, Tauvel
-
Mathématiques pour l'agrégation, Analyse et probabilités, Jean-Étienne Rombaldi
-
Cours d'algèbre
, Perrin
-
Algèbre
, Gourdon
-
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Fichier :
103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.
-
Leçon :
-
Remarque :
Il y a énormément de choses à dire dans cette leçon et je n'ai pas réussi à faire un choix alors j'ai décidé de tout laisser pour donner un large point de vue sur ce qui était faisable. Les deux dernières parties sont hors programme donc pas nécessaires (sauf le paragraohe où l'on s'intéresse à des sous-groupes distingués) mais si jamais on parle d'une des parties il faut bien être au point dessus au risque d'en subir les conséquences pendant l'oral...
La théorie de Sylow n'est pas obligatoire non plus (car pas au programme) mais je trouve que c'est un très bon investissement à faire durant l'année et la partie géométrie est appréciée du jury.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
104 : Groupes finis. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon ressemble beaucoup à celle juste au dessus (étrange...) !
On peut faire cette leçon en très (très !) grande majorité avec le Berhuy. Il faut éviter de faire énormément de rappels et il est préférable de donner beaucoup d'exemples et de les diversifier (par exemple en consacrant un petit bout de la leçon aux sous-groupes finis du groupe linéaire ou de ses sous-groupes).
La théorie de Sylow n'est pas obligatoire non plus (car pas au programme) mais je trouve que c'est un très bon investissement à faire durant l'année.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Carnet de voyage en Analystan, Caldero
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Cours d'algèbre
, Perrin
-
Théorie des groupes (bis), Delcourt
-
Algèbre et géométrie
, Combes
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Fichier :
105 : Groupe des permutations d'un ensemble fini. Applications.
-
Leçon :
-
Remarque :
Il faut parler des classes de conjugaison et connaître la preuve de l'existence et l'unicité de la décomposition en produit de cycles à supports disjoints et savoir l'appliquer en pratique.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Carnet de voyage en Analystan, Caldero
-
Cours d'algèbre
, Perrin
-
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas
-
Théorie des groupes (bis), Delcourt
-
Algèbre et géométrie
, Combes
-
Nouvelles histoires hédonistes de groupes et géométrie, tome 2, Philippe Caldero et Jérôme Germoni
-
Fichier :
106 : Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.
-
Leçon :
-
Remarque :
Il faut se concentrer dans cette leçon sur l'aspect algébrique du groupe linéaire et l'étudier en tant que groupe en parlant de générateurs, sous-groupes remarquables, actions de groupes, etc. On peut également pousser un peu plus les choses avec les groupes projectifs et les isomorphismes exceptionnels. Il faut également garder une petite place pour parler des propriétés topologiques de cet espace (connexité, sous-groupes compacts, ...).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Cours d'algèbre
, Perrin
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Topologie générale et espaces normés
, Hage Hassan
-
Fichier :
108 : Exemples de parties génératrices d'un groupe. Applications.
-
Leçon :
-
Remarque :
Tous les groupes dont on parle dans cette leçon doivent absolument être présentés sous l'angle de leurs générateurs et essayer de donner le plus d'exemples possibles au aussi variés que possibles : groupes cycliques, groupe symétrique, groupe diédral, groupe linéaire, groupe orthogonal, etc. Les groupes d'isométries des solides platoniciens sont également un bon investissement à faire pendant l'année.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Cours d'algèbre
, Perrin
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Algèbre et géométrie
, Combes
-
Théorie des groupes (bis), Delcourt
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Géométrie, Audin
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Fichier :
120 : Anneaux Z/nZ. Applications.
-
Leçon :
-
Remarque :
Dans cette leçon on doit s'intéresser à Z/nZ en tant que groupe mais surtout en tant qu'anneaux et donner le plus d'applicatiosn diverses possibles (RSA, caractéristique d'un anneau, théorème de Dirichlet faible, ...). Il faut également savoir résoudre un système de congruences, trouver l'inverse d'un élément dans Z/nZ et résoudre des équations du second degré dans cet anneau.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
121 : Nombres premiers. Applications.
-
Leçon :
-
Remarque :
Cette leçon est très vaste et il faut faire des choix, c'est donc l'occasion de vraiment mettre des choses avec lesquelles on est à l'aise ! Il faut aussi se méfier du fait que lorsque cette leçon apparaît dans un tirage, elle est quasi systématiquement choisie par le candidat et il est donc difficile de se démarquer dessus et les candidats sont censés bien maîtriser le sujet... Les résultats sur la répartition des nombres premiers peuvent être admis sans problème (certaines des démonstrations étant très longues) par contre il faut s'attendre à des questions sur des cas particuliers du théorème de la progression arithmétique de Dirichlet (le théorème de Dirichlet faible).
La théorie de Sylow est hors programme, mais je trouve que c'est un bon investissement à faire durant l'année.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
122 : Anneaux principaux. Exemples et applications.
-
Leçon :
-
Remarque :
Dans cette leçon il faut connaître les implications entre les différents types d'anneaux (euclidiens, principaux, factoriels, etc.) et connaître des contre-exemples. Il faut également savoir ce que chaque catégorie d'anneaux apporte par rapport aux autres.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
123 : Corps finis. Applications.
-
Leçon :
-
Remarque :
Il faut savoir démontrer l'existence et l'unicité du corps fini à q = p^n éléments et surtout construire par exemple F_4 ou F_9 explicitement en utilisant un polynôme irréductible. Il faut également savoir justifier pourquoi il existe des polynômes irréductibles de tout degré à coefficients dans F_q.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
125 : Extensions de corps. Exemples et applications.
-
Leçon :
-
Remarque :
La grande majorité de la leçon peut être faire uniquement en utilisant le Perrin !
Il faut éviter de s'aventurer en théorie de Galois car ça demande un gros investissement juste pour peu de leçons et le sujet est très compliqué avec peu de recul... Par contre, la constructibilité n'est pas très difficile et on peut en parler dans plusieurs leçons donc l'investissement peut vite être rentabiliser !
Le jury considère cette leçon comme difficile et donc maîtriser la base suffit.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
127 : Exemples de nombres remarquables. Exemples d'anneaux de nombres remarquables. Applications.
-
Leçon :
-
Remarque :
Cette leçon est nouvelle donc on ne connaît pas encore exactement les attentes du jury mais les anneaux de la forme Z[w] et les nombres algébriques semblent indispensables. Parler du corps des nombres constructibles peut être un bon investissement car ce n'est pas très difficile et on peut en parler dans plusieurs autres leçons.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.
-
Leçon :
-
Remarque :
La majeure partie de cette leçon peut être faite avec le Perrin (surtout les extensions de corps). Il faut donner des critères d'irréductibilité avec des applications et arriver à les mixer avec la théorie des corps et si possible parler un peu d'algèbre linéaire avec le polynôme minimal et ce qu'il apporte. Il faut également savoir montrer qu'un polynôme est irréductible (ou au moins proposer des critères), mais aussi construire des corps finis comme F_4 ou F_9 avec un polynôme irréductible, puis faire des calculs dans le corps fini ainsi construit (produits, inverses, etc.).
Il faut éviter de s'aventurer en théorie de Galois car ça demande un gros investissement juste pour peu de leçons et le sujet est très compliqué avec peu de recul... Par contre, la constructibilité n'est pas très difficile et on peut en parler dans plusieurs leçons donc l'investissement peut vite être rentabiliser !
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
142 : PGCD et PPCM, algorithmes de calcul. Applications.
-
Leçon :
-
Remarque :
Cette leçon ressemble beaucoup à la 122 sur les anneaux principaux mais il est possible de parler d'autres sujets comme par exemple de l'algorithme de Smith que je n'ai pas abordé ici.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
144 : Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est relativement difficile car malgré le nombre de choses à dire il y a énormément de choses à maîtriser. Toute la difficulté réside dans les polynômes à plusieurs variables : il faut savoir exploiter les relations coefficients-racines et utiliser le théorème de structure sur les polynômes symétriques et comme c'est la seule leçon qui parle de ça, ça demande pas mal de travail juste pour une leçon...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Cours d'algèbre
, Perrin
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas
-
Algèbre et probabilités, Gourdon
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Fichier :
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Remarque :
Je suis resté sur des choses relativement basiques pour cette leçon en donnant des résultats de deuxième année (polynôme caractéristique/minimal et réduction d'endomorphismes) et des applications comme le calcul d'inverse, de puissance ou d'exponentielle d'une matrice.
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
151 : Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.
-
Leçon :
-
Remarque :
Les endomorphismes cycliques sont importants dans cette leçon et on peut aller jusqu'à la décomposition Frobenius et les résultats théoriques qui suivent si on le désire (à condition d'avoir les idées des démos et de savoir faire en pratique avec l'algorithme de Smith).
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
152 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Remarque :
C'est une leçon de niveau de deuxième année à priori mais il faut en contreparti être à l'aise dessus. En particulier le critère de co-diagonalisabilité doit être connu et avoir une idée de la démonstration (d'autant plus que ça tombe souvent aux écrits !). La topologie sur les espaces de matrices peut être un bon investissement car les gens en parlent assez peu dans le cadre de l'agrégation et ça permet de se démarquer : l'investissement est donc rentable.
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
153 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d'éléments propres. Applications.
-
Leçon :
-
Remarque :
Cette leçon paraît facile au premier abord, mais comme il faut éviter de recopier les leçons 150 ou 152 et vraiment axer sur les éléments propres ça en fait une leçon un peu délicate... Surtout la partie "calcul approché d'éléments propres" avec les méthodes numériques comme par exemple la méthode de la puissance qui sont indispensables dans cette leçon et qu'il faut connaître un minimum.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
154 : Exemples de décompositions de matrices. Applications.
-
Leçon :
-
Remarque :
Cette leçon est l'occasion de faire le point sur la réduction de matrices (diagonalisation, trigonalisation, décomposition de Dunford, décomposition de Jordan, décomposition de Frobenius, etc.) ainsi que des générateurs du groupe linéaire. Il n'est pas essentielle de présenter toutes les décompositions de matrices que l'on connaît, mais il est important de noter que si on parle d'une décomposition dans le plan, il faut savoir la faire en pratique : certaines démonstrations sont "algorithmiques" et permettent de savoir faire sur une matrice de petite taille.
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
155 : Exponentielle de matrices. Applications.
-
Leçon :
-
Remarque :
Cette leçon est l'occasion de découvrir/approfondir la notion de rayon spectral et de découvrir pas mal de petites choses et même de bien faire le point (voire de découvrir) l'exponentielle matricielle.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
156 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Remarque :
Se pencher un peu sur la réduction de Jordan par les noyaux itérés vaut le coup car c'est un peu la "finalité" de cette théorie. Les démonstrations sont un peu compliquées donc je pense qu'avoir les idées suffit, par contre il faut savoir jordaniser une matrice en pratique !
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Tout-en-un MP/MP*, Claude Deschamps
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Objectif Agrégation, Beck, Malick, Peyré
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Fichier :
159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est assez difficile car la dualité n'est plus très abordée en CPGE ni à la fac donc il faut se mettre à niveau. Concevoir cette leçon est donc une tâche assez difficile étant donné qu'il faut quasiment découvrir un pan entier d'algèbre et prendre du recul le plus vite possible.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Algèbre et probabilités, Gourdon
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Analyse
, Gourdon
-
Fichier :
161 : Espaces vectoriels et espaces affines euclidiens : distances, isométries.
-
Leçon :
-
Remarque :
Cette leçon n'est pas la plus évidente à faire... Bosser un peu les isométries laissant globalement invariant le tétraèdre ou le cube peut être un bon investissement à faire : c'est joli et ça aide à comprendre vraiment l'intérêt des actions de groupe. Il faut également savoir classifier une isométrie vectorielle ou affine en dimension 2 ou 3 à partir d'une matrice (cas vectoriel) ou d'un système (cas affine).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Analyse
, Gourdon
-
Algèbre et probabilités, Gourdon
-
Géométrie, Audin
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Tout-en-un MP/MP*, Claude Deschamps
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Théorie des groupes (bis), Delcourt
-
Cours d'algèbre
, Perrin
-
Algèbre et géométrie
, Combes
-
Nouvelles histoires hédonistes de groupes et géométrie, tome 2, Philippe Caldero et Jérôme Germoni
-
Fichier :
190 : Méthodes combinatoires, problèmes de dénombrement.
-
Leçon :
-
Remarque :
Cette leçon peut se faire de bien des manières différentes. Personnellement, j'ai choisi d'insister sur lalgèbre et plus particulièrement sur la théorie des groupes parce que j'étais plutôt à l'aise, mais on peut parler de probabilités par exemples (les applications ne manquent pas !). En revanche il faut bien s'attendre à avoir des exercices qui nécessitent de faire du dénombrement et donc il faut en faire de temps en temps pour garder en tête des "techniques classiques de dénombrement".
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Tout-en-un MP/MP*, Claude Deschamps
-
Algèbre et géométrie
, Combes
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Carnet de voyage en Analystan, Caldero
-
Algèbre et probabilités, Gourdon
-
Exercices de mathématiques pour l'agrégation, algèbre 1, Serge Francinou
-
Fichier :
191 : Exemples d'utilisation de techniques d'algèbre en géométrie.
-
Leçon :
-
Remarque :
Cette leçon est très intéressante car elle est immense et elle permet ainsi de vraiment choisir ce qui nous plaît pour en faire une leçon. On peut par exemple piocher dans les groupes, la géométrie euclidienne et affine, les coniques, et même la théorie des corps en parlant de constructibilité par exemple ! Autrement dit, il est possible de faire une leçon qui n'a aucun point commun avec la mienne mais qui soit très bien faite !
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Géométrie, Audin
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Théorie des groupes (bis), Delcourt
-
Cours d'algèbre
, Perrin
-
Algèbre et géométrie
, Combes
-
Nouvelles histoires hédonistes de groupes et géométrie, tome 2, Philippe Caldero et Jérôme Germoni
-
Algèbre et probabilités, Gourdon
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Remarque :
Il faut savoir trouver le rayon de convergence d'une série entière et il faut également savoir comment on obtient l'existence et l'unicité de ce rayon de convergence (lemme d'Abel). Il faut aussi savoir démontrer qu'une série entière converge normalement sur tout compact du disque ouvert de convergence, savoir étudier ce qui se passe sur le cercle d'incertitude dans certains cas... Enfin, il faut aussi faire attention à ne pas dire de bêtises sur les séries entières car cette leçon est surtout d'un niveau de deuxième année donc le jury peut être exigeant.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
262 : Convergences d'une suite de variables aléatoires.Théorèmes limite. Exemples et applications.
-
Leçon :
-
Remarque :
Il faut axer cette leçon sur les différents modes de convergence des variables aléatoires et surtout les liens entre ces différents modes convergences (et également faire un schéma résumé en annexe pour que ça soit plus clair pour le jury). Il faut refaire quelques exercices et savoir quelle méthode utiliser pour montrer tel ou tel mode de convergence.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Probabilités 2
, Ouvrard
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Carnet de voyage en Analystan, Caldero
-
Les contre-exemples en mathématiques
, Hauchecorne
-
ORAUX X-ENS 6 (nouvelle édition), Francinou, Gianella, Nicolas
-
Fichier :
264 : Variables aléatoires discrètes. Exemples et applications.
-
Leçon :
-
Remarque :
Dans cette leçon il faut rester au maximum dans le cadre discret, parler de moments (espérance, variance, etc.), de formule du transfert, etc. Il faut connaître les propriétés propres aux variables aléatoires discrètes et savoir utiliser les différentes formules et les inégalités (et ne pas oublier les fonctions génératrices !).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Probabilités 1
, Ouvrard
-
Tout-en-un MP/MP*, Claude Deschamps
-
Algèbre et probabilités, Gourdon
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Carnet de voyage en Analystan, Caldero
-
ORAUX X-ENS 6 (nouvelle édition), Francinou, Gianella, Nicolas
-
Fichier :
101 : Groupe opérant sur un ensemble. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
104 : Groupes finis. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
105 : Groupe des permutations d'un ensemble fini. Applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
108 : Exemples de parties génératrices d'un groupe. Applications.
-
Leçon :
-
Remarque :
J'aime pas.
-
Références :
-
Fichier :
141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
149 : Déterminant. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime pas.
-
Références :
-
Fichier :
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :
152 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Remarque :
J'aime bien.
-
Références :
-
Fichier :