Utilisée dans les 5 versions de développements suivants :
Diagonalisation des endomorphismes autoadjoints
-
Développement :
-
Références :
Réduction de Jordan d'un endomorphisme nilpotent
-
Développement :
-
Remarque :
Ce document est long mais c'est parce que je donne des détails, des conseils et des résultats supplémentaires après le développement. Je m'appuie aussi sur les tableaux de Young et je vous invite à le faire car, comme je le dis dans le document, le développement est vraiment simple à retenir quand on se base sur les tableaux de Young. J'ai mis quelques dessins pour essayer de vous expliquer le principe mais le mieux est de se faire aider par un professeur.
Pour moi, il y a plus de recasages que ça. J'ai mis mes recasages au début du document. Vous pouvez bien sûr ne pas être d'accord. L'important est de savoir défendre ses choix face au jury.
-
Références :
-
Fichier :
Déterminant de Gram, projection sur un sev et inégalité d'Hadamard
-
Développement :
-
Remarque :
Je recase ce développement dans 149 (Déterminant) et 161 (Distances, isométries). Je suis également d'accord avec le recasage dans 191.
Dans les références que j'ai trouvées, les choses ne sont pas faites tout à fait correctement, surtout le cas d'égalité dans l'inégalité d'Hadamard. J'ai présenté ce développement devant un ami en justifiant simplement à l'aide de ce que j'ai souligné en noir sur la 2e page et il m'a fait remarquer que ce n'était pas trivial... On a ensuite fait le détail que j'ai recopié en dessous.
-
Références :
-
Fichier :
Réduction des endomorphismes normaux
Utilisée dans les 92 versions de leçons suivantes :
151 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Références :
-
Fichiers :
101 : Groupe opérant sur un ensemble. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 8.05.17
-
Références :
-
Fichier :
152 : Déterminant. Exemples et applications.
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
155 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Références :
-
Fichier :
157 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Références :
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Algèbre linéaire
, Grifone
-
Cours d'algèbre
, Perrin
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Petit guide de calcul différentiel
, Rouvière
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Fichier :
160 : Endomorphismes remarquables d’un espace vectoriel euclidien (de dimension finie).
-
Leçon :
-
Références :
-
Fichier :
162 : Systèmes d’équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.
-
Leçon :
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Remarque :
Plan qui ne va pas très loin sur les coniques, mais à mon avis ce n'est clairement pas le coeur de la leçon. Il faut juste au moins les mentionner, car c'est tout de même une application remarquable des formes quadratiques.
-
Références :
-
Fichier :
191 : Exemples d’utilisation des techniques d’algèbre en géométrie.
162 : Systèmes d’équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Références :
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Histoires hédonistes de groupes et géométries, Tome 2, Caldero, Germoni
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Algèbre
, Gourdon
-
Algèbre linéaire
, Grifone
-
Cours d'algèbre
, Perrin
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Fichier :
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
162 : Systèmes d’équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.
-
Leçon :
-
Référence :
-
Fichier :
191 : Exemples d’utilisation des techniques d’algèbre en géométrie.
-
Leçon :
-
Références :
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Fichier :
151 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Gri] Algèbre linéaire : Grifone
[Rom] Mathématiques pour l'agrégation: Algèbre et géométrie : Jean Etienne Rombaldi
[H2G2] Histoires hédonistes de groupes et géométries, Tome 1 : Caldero, Germoni
[All] Algèbre linéaire numérique : Allaire
-
Références :
-
Fichier :
161 : Distances et isométries d’un espace affine euclidien.
162 : Systèmes d’équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Mathématiques pour l'agrégation: Algèbre et géométrie : Jean Etienne Rombaldi
[Gri] Algèbre linéaire : Grifone
[H2G2] Histoires hédonistes de groupes et géométries, Tome 1 : Caldero, Germoni
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Mathématiques pour l'agrégation: Algèbre et géométrie : Jean Etienne Rombaldi
[Gri] Algèbre linéaire : Grifone
[H2G2] Histoires hédonistes de groupes et géométries, Tome 1 : Caldero, Germoni
[Rou] Petit guide de calcul différentiel : Rouvière
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
-
Références :
-
Fichier :
191 : Exemples d'utilisation des techniques d'algèbre en géométrie.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Calcul Différentiel : El Amrani (pas référencé par agregmaths)
[GouAn] Analyse : Gourdon
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Les] 131 Développements pour l’oral : D. Lesesvre
[Rou] Petit guide de calcul différentiel : Rouvière
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[Gri] Algèbre linéaire : Grifone
-
Références :
-
Analyse
, Gourdon
-
Cours d'analyse fonctionnelle, Daniel Li
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Algèbre linéaire
, Grifone
-
Fichier :
151 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
153 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Remarque :
Dans mon plan du jour-J, j'ai ajouté une dernière partie contenant : résolution de systèmes linéaires (diagonaliser pour simplifier), théorème spectral, éléments de topologie.
-
Références :
-
Fichier :
155 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Références :
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
160 : Endomorphismes remarquables d’un espace vectoriel euclidien (de dimension finie).
-
Leçon :
-
Références :
-
Fichier :
162 : Systèmes d’équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.
-
Leçon :
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
160 : Endomorphismes remarquables d’un espace vectoriel euclidien (de dimension finie).
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
152 : Déterminant. Exemples et applications.
153 : Polynômes d’endomorphisme en dimension finie. Réduction d’un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Références :
-
Fichier :
156 : Exponentielle de matrices. Applications.
157 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications
-
Leçon :
-
Remarque :
La plus grande difficulté de cette leçon est sa longueur: le sujet est très vaste. J'ai choisi de détailler l'algorithme de réduction de Gauss, mais en pratique, c'est une mauvaise idée (dans le plan en tout cas). Je n'ai pas insisté non plus sur les questions d'isotropie, parce que c'est plus difficile à trouver dans les références classiques (et puis il y a déjà bien assez à dire comme ça).
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
220 : Equations différentielles ordinaires. Exemples de résolution et d’études de solutions en dimension 1 et 2.
-
Leçon :
-
Références :
-
Fichier :
221 : Equations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
102 : Groupe des nombres complexes de module 1. Racines de l’unité. Applications.
-
Leçon :
-
Références :
-
Fichier :
149 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d’éléments propres. Applications.
152 : Déterminant. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Fichier :
162 : Systèmes d’équations linéaires; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Références :
-
Fichier :
148 : Exemples de décompositions de matrices. Applications.
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
152 : Déterminant. Exemples et applications.
155 : Endomorphismes diagonalisables en dimension finie.
157 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Références :
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
160 : Endomorphismes remarquables d’un espace vectoriel euclidien (de dimension finie).
-
Leçon :
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications
-
Leçon :
-
Références :
-
Fichier :
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
152 : Déterminant. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Fichier :
161 : Distances dans un espace affine euclidien. Isoméries.
-
Leçon :
-
Références :
-
Fichier :
162 : Systèmes d’équations linéaires; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications
-
Leçon :
-
Références :
-
Fichier :
191 : Exemples d’utilisation de techniques d’algèbre en géométrie.
-
Leçon :
-
Références :
-
Fichier :
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Remarque :
C'est la version que j'ai présentée en oral blanc. J'ai mis les références utilisées (entre crochets) à chaque paragraphe. Quelques remarques :
-Il y a des choses de la partie I qui se placent mieux dans la partie II (tout ce qui concerne les applications linéaires : théorème du rang, équivalences bijectivité ssi surjuectivité ssi injectivité, etc);
-Si on a le temps, la place et l'envie, on peut aussi parler de dualité;
-L'algorithme de Berlekamp se place bien dans la sous-partie extension de corps - corps finis.
-
Références :
-
Fichier :
148 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un pour la licence 1
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité. Applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
155 : Exponentielle de matrices. Applications.
161 : Espaces vectoriels et espaces affines euclidiens : distances, isométries.
162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité. Applications.
148 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est un vrai plaisir car tout (ou presque) est dans le Grifone !
Elle était dans mon tirage le jour J mais je ne l'ai pas prise, préférant la 125. J'ai en effet eu peur du fait que comme c'est une leçon considérée comme "facile", le jury attende un niveau de fou dessus... Je pense qu'il faut bien connaître les démos (au moins les idées) de la base extraite, de la base incomplète, du fait que toutes les bases ont même cardinal... De même, il faut savoir justifier qu'un sous-espace vectoriel d'un espace vectoriel de dimension finie est de dimension finie (c'est facile mais avec le stress le jour J on peut oublier l'argument...)
Concernant les développements, j'ai mis le théorème des extrema liés (+ un lemme d'algèbre linéaire sur la dualité que j'ai oublié d'écrire ici) car cela utilise à de multiples reprises la dimension finie et car c'était un développement que j'avais beaucoup travaillé donc je pouvais le réinvestir le plus possible. Evidemment, on peut trouver des choses plus simples à proposer... Le DEV 2 se justifie par le fait qu'on fait une récurrence sur la dimension. C'est en effet une application très pratique de la dimension finie, on a quelques théorèmes fondamentaux qui se démontrent comme ça (le théorème spectral par exemple...)
-
Références :
-
Fichier :
149 : Déterminant. Exemples et applications.
-
Leçon :
-
Remarque :
Il me semble que les gens font souvent l'impasse sur cette leçon (en tout cas c'était le cas dans ma prépa agreg) mais ça ne me paraît pas si compliqué de travailler ça. J'ai même plutôt apprécié le faire car j'ai appris plein de trucs notamment sur l'aspect géométrique avec les matrices de Gram : voir le document sur le site de Jérôme Von Buhren.
J'ai choisi de le définir à la manière de Gourdon (car c'est comme ça que j'avais appris en 1ère année) mais Grifone fait d'une autre manière... à voir selon les préférences.
Le jour J, je n'aurais certainement pas mis la PROP 34 sur le déterminant de Cauchy car la démonstration est IMMONDE.
Pour le DEV 2, attention au cas d'égalité, il faut le traiter soigneusement. Il est souvent bâclé dans les références (Gourdon et Grifone)
-
Références :
-
Fichier :
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Remarque :
Je suis resté sur des choses relativement basiques pour cette leçon. Dans la sous-partie "endomorphismes remarquables diagonalisables", on peut ajouter les normaux et les symétriques si on a la place, on peut aussi remplacer les orthogonaux par les symétriques...
J'ai eu tendance à prendre trop de livres pour la réduction, il vaut mieux en choisir un ou deux une bonne fois pour toutes (genre Mansuy et Grifone)
Pour le développement sur la décomposition de Dunford, attention à la version que vous choisissez ! Si c'est l'une des deux qui sont dans le Gourdon, il faut prendre la deuxième (qui est celle qui figure dans cette leçon). En effet, une prof nous avait assuré que le jury n'aimait pas la première version. On peut aussi démontrer le lemme des noyaux pour aller vers les projecteurs spectraux (et recaser ainsi mieux dans PGCD-PPCM)
-
Références :
-
Fichier :
152 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Remarque :
Cette leçon est l'une des premières que j'ai faites (la toute première je crois) et je l'ai présentée en classe. Le développement que j'ai fait au tableau était le DEV 1 : réduction des endomorphismes normaux. On m'a ensuite demandé de prouver que si un sev est stable par un endo normal, alors son orthogonal l'est aussi : il faut bien regarder la preuve, elle n'est pas du tout évidente si on ne l'a jamais vue !
Il faut aussi savoir démontrer : Si un endo $u$ est diagonalisable et si $F$ est un sev stable par $u$, $u_F$ est aussi diagonalisable.
Il faut aussi être au point sur la co-diagonalisabilité (d'autant que ça tombe souvent aux écrits !!).
On peut ajouter le critère de diagonalisabilité sur un corps fini (qu'il faut savoir démontrer).
J'ai eu tendance à prendre trop de livres pour la réduction, il vaut mieux en choisir un ou deux une bonne fois pour toutes (genre Mansuy et Grifone)
Pour le développement sur la décomposition de Dunford, attention à la version que vous choisissez ! Si c'est l'une des deux qui sont dans le Gourdon, il faut prendre la deuxième (qui est celle qui figure dans cette leçon). En effet, une prof nous avait assuré que le jury n'aimait pas la première version. On peut aussi démontrer le lemme des noyaux pour aller vers les projecteurs spectraux (et recaser ainsi mieux dans PGCD-PPCM)
-
Références :
-
Fichier :
159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
-
Leçon :
-
Remarque :
J'ai eu beaucoup de mal à élaborer un plan satisfaisant pour cette leçon mais je pense que c'est à peu près bon.
/!\ PROBLEME : Le DEV 1 ne rentre pas du tout dans cette leçon. J'ai cherché désespérément un DEV pour cette leçon et à la toute fin de l'année, j'ai fini par mettre le dual de $\mathcal{M}_n(K)$... Le problème était qu'il y avait un gros écart de difficulté entre celui-là et les extrema liés... Mais il fallait bien mettre quelque chose...
La partie III-2) a changé 3 fois au cours de l'année, et finalement ça a été justement celle sur le dual de $\mathcal{M}_n(K)$.
-
Références :
-
Fichier :
162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Remarque :
J'ai eu beaucoup de difficultés à trouver des références pour cette leçon, c'est pour cela que certains résultats sont marqués d'un cœur au crayon, signifiant "par cœur".
Il faut parler des formules de Cramer, du théorème de Rouché-Fontené. J'ai appris beaucoup de choses que je ne savais pas concernant le pivot de Gauss en faisant cette leçon, notamment ses nombreuses applications (qui étaient passées à la trappe en première année à cause du confinement...)
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité. Applications.
-
Leçon :
-
Remarque :
Cette leçon m'a demandé beaucoup de travail car je connaissais très peu les formes quadratiques avant de rentrer en prépa agreg : ça vaut le coup de les travailler pour prendre du recul sur plein de choses, et surtout parce que mine de rien ce n'est pas marginal au programme de l'agreg (ça peut tomber aux écrits !)
Les résultats marqués d'un cœur sont ceux que je rajoutais "par cœur" car introuvables dans les références...
Pour Sylvester, je définis les choses dans un certain ordre qui n'est pas celui des livres mais qui est celui du cours sur lequel je me suis basé pour travailler les formes quadratiques.
Ce n'est pas du tout obligatoire de parler du groupe orthogonal pour une forme quadratique, d'ailleurs si j'étais tombé sur cette leçon le jour J et que je l'avais choisie, je n'en aurais pas parlé.
Il est indispensable de savoir mettre en œuvre la méthode de Gauss en pratique pour décomposer en carrés !
Au besoin, j'ai un poly de cours sur les formes quadratiques qui est plutôt bien fait, n'hésitez pas à me contacter pour que je vous l'envoie.
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Remarque :
J'ai présenté cette leçon en classe au mois d'avril.
J'ai encadré les THM23, DEF 24, COR25 mais il ne faut pas en tenir compte. Pour cette leçon, il faut vraiment se concentrer sur la théorie dans $\mathbb{R}$, alors que dans la 170, on peut (et même on doit) parler de ce qui se passe sur $\mathbb{C}$ voire sur $\mathbb{F}_q$.
Il faut bien savoir décomposer en carrés par la méthode de Gauss en pratique et en tirer toutes les infos sur la forme quadratique : rang, signature, base $q$-orthogonale,...
Concernant les coniques : même en ayant passé beaucoup de temps dessus, j'étais pas vraiment à l'aise... On trouve très difficilement des références où les choses sont VRAIMENT bien faites... Il y a Ladegaillerie et surtout le livre de Michèle Audin et celui de Aebischer (Géométrie L3)... Le problème est que selon les ouvrages, le vocabulaire peut changer... Et que le point de vue va très vite vers la géométrie projective que je voulais éviter à tout prix (un trop gros investissement juste pour cette leçon... En plus c'est hors programme...)
Je pense qu'il faut parler de la classification euclidienne et affine, savoir classifier une conique en pratique (même si personnellement j'étais toujours fébrile quand il s'agissait du cas parabolique). L'un de mes professeurs disait qu'il fallait bien parler de l'aspect géométrique par foyer, génératrice, excentricité, définition monofocale, bifocale et tout ça... Il avait à dire que le jury était constitué soit de profs pas du tout à l'aise avec les coniques, soit de profs à l'aise seulement avec l'aspect géométrique... Je pense que dans tous les cas, le jury sait que c'est une notion très peu connue des candidats et que savoir classifier, c'est déjà pas mal, pas besoin d'aller s'aventurer dans les dingueries du Ladegaillerie ou même du Rombaldi avec le centre orthoptique ou je ne sais quoi...
Concernant le DEV 2 (Par 5 points passe une conique), il m'a demandé beaucoup de travail mais il se recase dans la 191 aussi donc c'est pas mal. Je le trouve pas mal en vrai, ça permet de travailler les coordonnées barycentriques... Pour le trouver dans un ouvrage par contre bonne chance... Il n'y a que le livre de Isenmann et Pecatte (qui sont d'ailleurs je crois les auteurs de ce site).
Bref, voilà une proposition de leçon 171, je pense qu'il faut très bien bosser les formes quadratiques et se tenir quand même un peu au courant de la classification des coniques et des aspects géométriques mais ne pas y passer des semaines et des week-end entiers...
Au besoin, j'ai un poly de cours sur les formes quadratiques qui est plutôt bien fait, n'hésitez pas à me contacter pour que je vous l'envoie. Malheureusement, je n'ai pas d'analogue sur les coniques...
-
Références :
-
Fichier :
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Remarque :
Plan préparé en binôme pendant mon année de préparation à l'agreg. Plan plutôt complet, il manque de l'exponentielle de matrices je pense (si j'étais tombé sur cette leçon à l'oral, j'aurais choisi de mettre l'image de l'exponentielle sur R et C en développement).
-
Références :
-
Fichier :
162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Remarque :
J'execre cette leçon.
-
Références :
-
Fichier :