Soit $f :\mathbb{R}^{+*}\rightarrow\mathbb{R}^{+*}$ logarithmiquement convexe telle que $f(1)=1$ vérifiant l'équation fonctionnelle
$$\forall x>0,~f(x+1)=x\cdot f(x).$$
Alors $$f=\Gamma.$$
Il est de renverser le plan de démonstration : montrer l'existence puis l'unicité, et déduire le lemme de l'unicité. Mais le lemme permettait de rajouter de la matière dans le développement.
Il est possible de démontrer que $\Gamma$ est logarithmiquement convexe directement avec l'inégalité de Hölder, sans dérivation.
On peut conclure le développement par un tracé approximatif de $\Gamma$ sur $\mathbb{R}^{+*}$ à l'aide de ses valeurs sur les entiers et de sa convexité. Le théorème permet intuitivement de justifier que ce tracé approximatif n'est pas très éloigné de la courbe exacte.
L'équivalent $\Gamma(x) \sim \sqrt{2\pi} ~x^{x-1/2} ~e^{-x}$ que j'utilise en cours de route s'obtient via la méthode de Laplace mais ma seule référence est un très bon cours... On peut se contenter de la méthode habituelle, que je trouve un peu moins élégante.
Le résultat permet de montrer la formule de Legendre sans aucun calcul, ça vaut le coup de le mettre au moins dans le plan.
Je présente le théorème de Bohr Mollerup, et l'applique pour montrer la formule de duplication de Legendre, que j'applique pour calculer l'intégrale de Raabe. Ca rentre donc dans la leçon de calcul d'intégrales, et ça se présente super bien. Bref, top!
Le théorème est dans le Rudin. Pour les applications, je n'ai pas de référence, mais ça s'apprend bien / ça doit se trouver.
*Mes développements n’ont pas été pensés pour être partagés au départ, vous excuserez mon écriture et mes notations un peu brouillonnes. Soyez vigilants sur les coquilles/erreurs possibles et critiques sur ce que vous lisez. N’hésitez pas à me contacter pour des clarifications.
*La plupart de mes dévs contiennent un plan et un rappel des énoncés, pour être au clair sur ce qu’on a à disposition et ce qu’on veut faire.
*Les recasages inscrits sur le document sont les numéros de 2023/2024.
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.