Ses plans de leçons :
190 : Méthodes combinatoires, problèmes de dénombrement.
206 : Exemples d’utilisation de la notion de dimension finie en analyse
101 : Groupe opérant sur un ensemble. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
102 : Groupe des nombres complexes de module 1. Racines de l’unité. Applications.
-
Leçon :
-
Remarque :
Référence supplémentaire: Algèbre et géométrie: CAPES et Agrégation : Pierre Burg
J'avais initialement ajouté le paragraphe sur les angles orientés, non orientés, mesure principale et écart angulaire pour combler le vide laissé par l'absence de caractères, mais finalement la leçon est déjà assez longue sans ça (on peut donc enlever les items 40 à 44).
-
Références :
-
Fichier :
103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.
104 : Groupes finis. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
105 : Groupe des permutations d’un ensemble fini. Applications.
106 : Groupe linéaire d’un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.
108 : Exemples de parties génératrices d’un groupe. Applications.
120 : Anneaux Z/nZ. Applications.
121 : Nombres premiers. Applications.
122 : Anneaux principaux. Exemples et applications.
-
Leçon :
-
Remarque :
Le théorème des deux carrés de Fermat est, à mon avis, hors sujet pour cette leçon, puisqu'il utilise de manière critique la factorialité, et non la principalité des anneaux en jeu (il y a même peut-être moyen de court-circuiter l'argument pour ne pas du tout utiliser la factorialité...)
... mais je le mets quand même parce que tout le monde l'accepete, et ça me fait un développement en moins...
-
Références :
-
Fichier :
123 : Corps finis. Applications.
125 : Extensions de corps. Exemples et applications.
126 : Exemples d’équations en arithmétique.
-
Leçon :
-
Remarque :
Références supplémentaires:
- Algèbre et géométrie: CAPES et Agrégation : Pierre Burg
- Algèbre I : Daniel Guin
-
Références :
-
Fichier :
141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
142 : PGCD et PPCM, algorithmes de calcul. Applications.
144 : Racines d’un polynôme. Fonctions symétriques élémentaires. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
148 : Exemples de décompositions de matrices. Applications.
149 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d’éléments propres. Applications.
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
152 : Déterminant. Exemples et applications.
153 : Polynômes d’endomorphisme en dimension finie. Réduction d’un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Références :
-
Fichier :
154 : Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.
-
Leçon :
-
Remarque :
Plan un peu court.
-
Références :
-
Fichier :
155 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Remarque :
Je suis passé sur cette leçon à l'oral. J'ai fait un plan globalement similaire à celui-ci, dont j'étais un peu moins satisfait.
Je n'ai pas fait de partie "Applications". Plutôt que de faire un paragraphe sur la décomposition de Dunford et le critère de Klarès, j'ai mis ce-dernier dans le paragraphe Critères de diagonalisabilité (en précisant dans la défense que ça nécessitait Dunford), et le paragraphe de Dunford est devenu un paragraphe "Application: puissance et exponentielle d'une matrice" de la partie II. Le paragraphe de topologie y a également été déplacé. En contrepartie, j'ai sérieusement raccourci le paragraphe sur les théorèmes spectraux au strict minimum, et je n'ai pas parlé de la réduction des endomorphismes normaux.
On peut étoffer la partie de topologie.
-
Références :
-
Fichier :
156 : Exponentielle de matrices. Applications.
157 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Références :
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Fichier :
159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
160 : Endomorphismes remarquables d’un espace vectoriel euclidien (de dimension finie).
162 : Systèmes d’équations linéaires; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Remarque :
Référence supplémentaire: Algèbre et géométrie: CAPES et Agrégation : Pierre Burg
Les deux développements son plutôt hors sujet. C'est une leçon intéressante en soi, mais comme je ne veux pas parler de LU, QR & cie., je manque de choses à dire. Pour combler le vide, j'ai détaillé l'entièreté de l'algorithme du pivot de Gauss, mais ce n'est pas une bonne solution...
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications
-
Leçon :
-
Remarque :
La plus grande difficulté de cette leçon est sa longueur: le sujet est très vaste. J'ai choisi de détailler l'algorithme de réduction de Gauss, mais en pratique, c'est une mauvaise idée (dans le plan en tout cas). Je n'ai pas insisté non plus sur les questions d'isotropie, parce que c'est plus difficile à trouver dans les références classiques (et puis il y a déjà bien assez à dire comme ça).
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
181 : Barycentres dans un espace affine réel de dimension finie, convexité. Applications.
191 : Exemples d’utilisation de techniques d’algèbre en géométrie.
-
Leçon :
-
Remarque :
J'ai choisi d'explorer les deux axes suivants: d'un côté les isométries des polygones/poyèdres réguliers et la constructibilité, et d'autre part les coniques.
Ce plan fait également un pari: 2 pages de texte, 2 pages de dessins, contrairement au 3-1 habituel. Après tout, comme on dit, une leçon de géométrie sans dessins, «c'est une bête qui n'a qu'un œil, c'est un oiseau sans plumage, une forêt sans écureuil»...
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
204 : Connexité. Exemples et applications.
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.
-
Leçon :
-
Remarque :
Plan éprouvé par une présentation durant l'année, à l'exception de la dernière partie sur l'holomorphie.
J'ai rajouté cette-dernière suite à la publication du rapport de cette année, mais sans trop de sérieux, car j'ignore ce qui est réellement attendu à part la condition de Cauchy-Riemann. Peut-être vaut-il mieux ne pas la mettre du tout, et en parler durant la défense de plan.
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
220 : Equations différentielles ordinaires. Exemples de résolution et d’études de solutions en dimension 1 et 2.
-
Leçon :
-
Références :
-
Fichier :
221 : Equations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
Plan un peu court.
-
Références :
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1 = f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Fichier :
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Références :
-
Fichier :
235 : Problèmes d’interversion en analyse.
236 : Illustrer par des exemples quelques méthodes de calcul d’intégrales de fonctions d’une ou plusieurs variables.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Calcul Intégral
, Faraut
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer
-
Analyse numérique et équation différentielle
, Demailly
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Analyse complexe pour la Licence 3, Tauvel
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Petit guide de calcul différentiel [Doublon], François Rouvière
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse
, Gourdon
-
Fichier :
245 : Fonctions d’une variable complexe. Exemples et applications.
-
Leçon :
-
Référence :
-
Fichier :
246 : Séries de Fourier. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
250 : Transformation de Fourier. Applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :
261 : Loi d’une variable aléatoire : caractérisations, exemples, applications.
262 : Convergences d’une suite de variables aléatoires. Théorèmes limite. Exemples et applications.
264 : Variables aléatoires discrètes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
265 : Exemples d’études et d’applications de fonctions usuelles et spéciales.
-
Leçon :
-
Références :
-
Analyse complexe pour la Licence 3, Tauvel
-
Elements d'analyse réelle
, Rombaldi
-
Analyse
, Gourdon
-
Objectif Agrégation, Beck, Malick, Peyré
-
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer
-
Les fonctions spéciales vues par les problèmes, 517.5 , Groux, Soulat
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Calcul Intégral
, Faraut
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
266 : Illustration de la notion d’indépendance en probabilités.
-
Leçon :
-
Remarque :
J'ai choisi de détailler, dans ma première partie, l'existence d'une suite de variables aléatoires identiques et indépendantes d'une loi donnée, à partir d'une suite de pile ou face.
-
Références :
-
Fichier :
267 : Exemples d’utilisation de courbes en dimension 2 ou supérieure.