Ses plans de leçons :
142 : PGCD et PPCM, algorithmes de calcul. Applications.
148 : Exemples de décompositions de matrices. Applications.
250 : Transformation de Fourier. Applications.
101 : Groupe opérant sur un ensemble. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
102 : Groupe des nombres complexes de module 1. Racines de l’unité. Applications.
-
Leçon :
-
Références :
-
Fichier :
103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.
-
Leçon :
-
Références :
-
Fichier :
104 : Groupes finis. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
105 : Groupe des permutations d’un ensemble fini. Applications.
-
Leçon :
-
Références :
-
Fichier :
106 : Groupe linéaire d’un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.
-
Leçon :
-
Références :
-
Fichier :
108 : Exemples de parties génératrices d’un groupe. Applications.
-
Leçon :
-
Références :
-
Fichier :
120 : Anneaux Z/nZ. Applications.
-
Leçon :
-
Références :
-
Fichier :
121 : Nombres premiers. Applications.
-
Leçon :
-
Références :
-
Fichier :
122 : Anneaux principaux. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
123 : Corps finis. Applications.
-
Leçon :
-
Références :
-
Fichier :
125 : Extensions de corps. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
126 : Exemples d’équations en arithmétique.
-
Leçon :
-
Références :
-
Fichier :
141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
144 : Racines d’un polynôme. Fonctions symétriques élémentaires. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
149 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d’éléments propres. Applications.
-
Leçon :
-
Remarque :
Clairement le deuxième développement est bancal et je suis content de pas être tombé dessus. Alors un conseil, présentez autre chose que la décomposition LU / Cholesky.
Le Allaire est pas nécessaire, le Ciarlet suffit.
-
Références :
-
Fichier :
151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
152 : Déterminant. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
153 : Polynômes d’endomorphisme en dimension finie. Réduction d’un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Références :
-
Fichier :
154 : Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.
-
Leçon :
-
Références :
-
Fichier :
155 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Références :
-
Fichier :
156 : Exponentielle de matrices. Applications.
-
Leçon :
-
Références :
-
Fichier :
157 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Références :
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Fichier :
160 : Endomorphismes remarquables d’un espace vectoriel euclidien (de dimension finie).
-
Leçon :
-
Référence :
-
Fichier :
161 : Distances dans un espace affine euclidien. Isoméries.
-
Leçon :
-
Références :
-
Fichier :
162 : Systèmes d’équations linéaires; opérations élémentaires, aspects algorithmiques et conséquences théoriques.
-
Leçon :
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications
-
Leçon :
-
Références :
-
Fichier :
181 : Barycentres dans un espace affine réel de dimension finie, convexité. Applications.
-
Leçon :
-
Références :
-
Fichier :
190 : Méthodes combinatoires, problèmes de dénombrement.
-
Leçon :
-
Références :
-
Fichier :
191 : Exemples d’utilisation de techniques d’algèbre en géométrie.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
206 : Exemples d’utilisation de la notion de dimension finie en analyse
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
214 : Théorème d’inversion locale, théorème des fonctions implicites. Exemples et applications en analyse et en géométrie.
215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
220 : Equations différentielles ordinaires. Exemples de résolution et d’études de solutions en dimension 1 et 2.
221 : Equations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.
-
Leçon :
-
Remarque :
Lors d'une présentation orale, je présentais les résultats importants de mon plan sur l'exemple du pendule simple :
- retrouver l'équation du pendule : x" + sin x = 0
- si x est petit on est dans le cas linéaire : x" + x = 0 (c'est le cas qui nous importe dans cette leçon)
- on peut tracer le portrait de phase au tableau
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Références :
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1 = f(un). Exemples. Applications à la résolution approchée d’équations.
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Analyse
, Gourdon
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse matricielle
, Rombaldi
-
Oraux X-ENS Analyse 4
, Francinou, Gianella, Nicolas
-
Fichier :
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Référence :
-
Fichier :
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Références :
-
Fichier :
235 : Problèmes d’interversion en analyse.
-
Leçon :
-
Références :
-
Fichier :
236 : Illustrer par des exemples quelques méthodes de calcul d’intégrales de fonctions d’une ou plusieurs variables.
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Références :
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
245 : Fonctions d’une variable complexe. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
246 : Séries de Fourier. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse
, Gourdon
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :