Leçon 181 : Convexité dans Rn. Applications en algèbre et en géométrie.

(2024) 181

Dernier rapport du Jury :

(2024 : 181 - Convexité dans Rn. Applications en algèbre et en géométrie.) Dans cette leçon, la notion de convexité doit être abordée d'un point de vue géométrique : les barycentres sont incontournables, et on doit, à ce titre, pouvoir utiliser la notion de coordonnées barycentriques. Les exemples géométriques sont importants et on espère que les notions introduites soient illustrées par des figures. Il est important de parler d'enveloppe convexe et de savoir dessiner l'enveloppe convexe d'un nombre fini de points dans le plan ; le théorème de Gauss-Lucas trouve parfaitement sa place dans cette leçon. Il semble approprié d'évoquer les points extrémaux, ainsi que des applications qui en résultent. Par ailleurs, il est important d'avoir compris le lien entre fonctions convexes et ensembles convexes. L'étude de certains ensembles convexes de matrices et de leurs propriétés rentre tout à fait dans le cadre de la leçon : on peut penser au cône des matrices symétriques (définies) positives, sur lequel le déterminant est log-convexe. Pour aller plus loin, , les candidates et candidats peuvent présenter le lemme de Farkas, le théorème de séparation de Hahn-Banach, les théorèmes de Helly et de Caratheodory, ou parler des sous- groupes compacts de $GL_n(R)$.

(2022 : 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.) Dans cette leçon, la notion de coordonnées barycentriques est incontournable ; des illustrations dans le triangle (coordonnées barycentriques de certains points remarquables) sont envisageables. Les candidats doivent savoir reconnaître des lignes de niveau et des lieux de points en utilisant des coordonnées barycentriques. Il est important de parler d'enveloppe convexe et de savoir dessiner l'enveloppe convexe d'un nombre fini de points dans le plan ; le théorème de Gauss-Lucas trouve parfaitement sa place dans cette leçon. Il semble approprié d'évoquer les points extrémaux, ainsi que des applications qui en résultent. Par ailleurs, il est important d'avoir compris le lien entre fonctions convexes et ensembles convexes. S'ils le désirent, les candidats peuvent aller plus loin en présentant le lemme de Farkas, le théorème de séparation de Hahn-Banach, les théorèmes de Helly et de Caratheodory, ou parler des sous-groupes compacts de $GL_n(R)$.
(2019 : 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.) Dans cette leçon, la notion de coordonnées barycentriques est incontournable ; des illustrations dans le triangle (coordonnées barycentriques de certains points remarquables) sont envisageables. $\\$ Les candidats doivent savoir reconnaître des lignes de niveau et des lieux de points en utilisant des coordonnées barycentriques. Il est important de parler d’enveloppe convexe et de savoir dessiner l’enveloppe convexe d’un nombre fini de points dans le plan ; le théorème de Gauss-Lucas trouve parfaitement sa place dans cette leçon. Il semble approprié d’évoquer les points extrémaux, ainsi que des applications qui en résultent. Par ailleurs, il est important d’avoir compris le lien entre fonctions convexes et ensembles convexes. $\\$ S’ils le désirent, les candidats peuvent aller plus loin en présentant le lemme de Farkas, le théorème de séparation de Hahn-Banach, les théorèmes de Helly et de Caratheodory, ou parler des sous-groupes compacts de $Gl_n(\textbf{R})$.
(2017 : 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.) Dans cette leçon, la notion de coordonnées barycentriques est incontournable ; des illustrations dans le triangle (coordonnées barycentriques de certains points remarquables) sont envisageables. Il est important de parler d’enveloppe convexe, de points extrémaux, ainsi que des applications qui en résultent. S’ils le désirent, les candidats peuvent aller plus loin en présentant le lemme de Farkas, le théorème de séparation de Hahn-Banach, ou les théorèmes de Helly et de Caratheodory.
(2016 : 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.) Dans cette leçon, la notion de coordonnées barycentriques est incontournable ; des illustrations dans le triangle (coordonnées barycentriques de certains points remarquables) sont envisageables. Il est important de parler d’enveloppe convexe, de points extrémaux, ainsi que des applications qui en résultent. S’ils le désirent, les candidats peuvent aller plus loin en présentant le lemme de Farkas, le théorème de séparation de Hahn-Banach, ou les théorèmes de Helly et de Caratheodory.
(2015 : 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.) On attend des candidats qu'ils parlent de coordonnées barycentriques et les utilisent par exemple dans le triangle (coordonnées barycentriques de certains points remarquables). Il est judicieux de parler d'enveloppe convexe, de points extrémaux, ainsi que des applications qui en résultent.
(2014 : 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.) On attend des candidats qu'ils parlent de coordonnées barycentriques et les utilisent par exemple dans le triangle (coordonnées barycentriques de certains points remarquables). Il est judicieux de parler d'enveloppe convexe, de points extrémaux, ainsi que des applications qui en résultent.

Développements :

Plans/remarques :

2025 : Leçon 181 - Convexité dans Rn. Applications en algèbre et en géométrie.

  • Auteur :
  • Remarque :
    Ebauche ou brouillon de plan/méta-plan réalisé pendant l'année 2023-2024.

    Mon conseil : prenez ce que vous trouvez pertinent et faites simple. Pas besoin de faire compliqué pour avoir l'agreg.

    Méta-plan appris pour le jour J. Fait en juin 2024 et non validé par une personne compétente.

    I. Ensembles convexes
    1) Barycentres (DVT : suite de polygones)
    2) Ensemble convexes
    3) Enveloppes convexes
    4) Fonctions convexes
    II. Hyperplans et points extremaux
    1) Hyperplans (DVT : enveloppe convexe de On(R))
    2) Points extremaux


  • Fichier :

2024 : Leçon 181 - Convexité dans Rn. Applications en algèbre et en géométrie.

  • Auteur :
  • Remarque :
    J'ai fait l'impasse sur cette leçon, je l'ai quand même faite pour me donner bonne conscience et la satisfaction d'avoir fait les 70 leçons, mais je ne l'ai pas du tout travaillée. J'ai été très contrarié par le fait qu'ils avaient enlevé "Barycentres" de l'intitulé de leçon, je trouve franchement que ça ne laisse pas grand chose de bien intéressant à dire. Même le rapport du jury semble ne pas trop savoir quoi dire.....
    Quant aux développements, par 5 points passe une conique ça passerait si y avait encore barycentres dans le nom de la leçon... Mais là je pense que ça passe pas...
    Krein-Millman ça passe bien, mais je ne l'ai que peu travaillé...
    Je mets quand même ma version ici car je pense que la leçon est relativement ok (même s'il faut changer le DEV 1) mais on doit pouvoir trouver beaucoup mieux...
  • Références :
  • Fichier :
  • Auteur :
  • Remarque :
    Retrouvez tous nos plans de leçons ainsi que les fichiers latex associés à nos leçons sur notre site : https://sites.google.com/view/tribalchiefandwiseman/home?authuser=0
    Bonne preparation à vous !

2023 : Leçon 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.

  • Auteur :
  • Remarque :
    Possibilité d'avoir ma version complète manuscrite en me contactant par mail.
  • Fichier :

2022 : Leçon 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.


2020 : Leçon 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.


2019 : Leçon 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.


2017 : Leçon 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.


2016 : Leçon 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.


2015 : Leçon 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.


Retours d'oraux :

2024 : Leçon 181 - Convexité dans Rn. Applications en algèbre et en géométrie.

  • Leçon choisie :

    181 : Convexité dans Rn. Applications en algèbre et en géométrie.

  • Autre leçon :

    153 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d'éléments propres. Applications.

  • Développement choisi : (par le jury)

    Hahn-Banach géométrique

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Mon plan pour contexte:
    I. Ensembles convexes
    1. Généralités
    2. Séparation (dev 1: Hahn Banach)
    3. Projection sur un convexe fermé
    II. Barycentres
    1. généralités
    2. lien avec la convexité
    III. Polyèdres en dimension 3
    1. Généralité
    2. Classification des polyèdres réguliers
    IV. Applications affines
    (dev 2:point de Fermat)

    Pas de questions ni de remarques sur le développement.
    Sur le plan le jury m'a fait énoncer le théorème de Carathéodory que j'avais omis (je ne l'avait pas trouvé dans les refs) et m'a fait remarqué que les applications affines sont un exemple trop trivial d'application convexe.

    Exercices:
    I. donner une condition nécessaire et suffisante sur A dans Sn(R) pour que X->tXAX soit convexe.
    Je tente la méthode naïve de prendre une combinaison convexe, vu que c'était un mauvaise piste le jury me guide pour me faire remarquer qu'on regarde une forme quadratique. A partir de la on conclut assez rapidement en utilisant le théorème d'inertie de Sylvester: A=tPDP où P est inversible, D diagonale avec des 1,-1 et 0 sur la diagonale. L'application s'écrit alors tXtPDPX=tYDY est convexe si et seulement si il n'y a que des 1 ou des 0 sur la diagonale de D, c'est à dire si et seulement si A positive.

    II. Cette fois A définie positive et B un vecteur. Que dire des extremums de X->tXAX+tBX.
    Calculer la différentielle de façon classique. On trouve 2tXAH+tBH. On en déduit le gradient facilement qui vaut en X 2AX+B. on trouve le point critique qui est unique. C'est un minimum puisque l'application est convexe.

    III. Donner un algorithme pour déterminer l'enveloppe convexe d'un nombre fini de point.
    Je ne savais pas faire on n'a pas perdu beaucoup de temps.

    IV. démontrer le théorème de Gauss-Lucas.
    Je ne savais pas faire et cette fois le jury ne m'a pas guider du coup j'avanças lentement. L'épreuve s'est terminée durant cette question (une démonstration est faite dans le livre carnet de voyage en algébrie)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury à été sympathique et m'a bien aider dans les exercices.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Beaucoup plus d'exercice que ce à quoi on avait été préparé au cours de l'année dans notre prépa. Je ne avais pas qu'on avait 15 minutes entre la fin de la préparation et le passage pendant lesquelles on peut relire notre plan et nos notes ce qui est sympa.

  • Note obtenue :

    12.5


2015 : Leçon 181 - Barycentres dans un espace affine réel de dimension finie, convexité. Applications.

  • Leçon choisie :

    181 : Barycentres dans un espace affine réel de dimension finie, convexité. Applications.

  • Autre leçon :

    154 : Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.

  • Développement choisi : (par le jury)

    Enveloppe convexe de On(R)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Montrer que les bissectrices d'un triangle se croisent (Indication : utiliser l'équation normale d'une droite ???) --\textgreater pas su faire :(

    Montrer que les médianes se croisent.

    Utilisation de Hahn-Banach ?

    On prend deux sphères disjointes, $x_0$ un point de la première, $y_0$ le projeté de ce point sur la deuxième, $x_1$ le projeté de $y_0$ sur le première etc. Montrer que ça converge et dire vers quoi.

    Comment motiveriez-vous la géométrie affine à une classe ?

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?



    Le jury parlait bien mais n'aidait presque pas.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    16


Références utilisées dans les versions de cette leçon :

Géométrie, Audin (utilisée dans 34 versions au total)
Algèbre L3 , Szpirglas (utilisée dans 45 versions au total)
Géométrie , Tauvel (utilisée dans 11 versions au total)
Analyse fonctionelle , Brézis (utilisée dans 35 versions au total)
Elements d'analyse réelle , Rombaldi (utilisée dans 88 versions au total)
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas (utilisée dans 142 versions au total)
Objectif Agrégation, Beck, Malick, Peyré (utilisée dans 292 versions au total)
Analyse pour l'agrégation, Queffelec, Zuily (utilisée dans 219 versions au total)
Algèbre et géométrie , Combes (utilisée dans 40 versions au total)
Cours de géométrie, Dany-Jack Mercier (utilisée dans 10 versions au total)
Algèbre et probabilités, Gourdon (utilisée dans 77 versions au total)
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier (utilisée dans 108 versions au total)
Topologie générale et espaces normés , Hage Hassan (utilisée dans 42 versions au total)
Tout-en-un MP/MP*, Claude Deschamps (utilisée dans 40 versions au total)
Nouvelles histoires hédonistes de groupes et géométrie, tome 2, Philippe Caldero et Jérôme Germoni (utilisée dans 37 versions au total)
Géométrie analytique classique , Eiden (utilisée dans 17 versions au total)
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi (utilisée dans 493 versions au total)
Oraux X-ENS Algèbre 3 , Francinou, Gianella, Nicolas (utilisée dans 74 versions au total)
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte (utilisée dans 144 versions au total)
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron (utilisée dans 75 versions au total)
Géométrie élémentaire, Bernard Truffault (utilisée dans 1 versions au total)
Histoires hédonistes de groupes et géométries, Tome 2, Caldero, Germoni (utilisée dans 20 versions au total)
Oraux X-ENS Analyse 3, Francinou, Gianella, Nicolas (utilisée dans 29 versions au total)