Développement :
Théorème de projection sur un convexe fermé
Détails/Enoncé :
Le but de ce développement est de montrer qu’il est possible de définir une projection sur un convexe fermé non vide d’un espace hilbertien (H, < ·; · >_H).
C'est un développement ultra classique, pas très difficile, qui se recase bien... Je crois que c'était mon préféré !
Avec l'entraînement (et parce que j'écris à 1000 à l'heure), je faisais tout ça en moins de 15 minutes mais en prenant le temps de bien expliquer ce qu'on fait, ce qu'on va faire... ça tient !
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.