(2016 : 226 - Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples et applications. )
Citer au moins un théorème de point fixe dans cette leçon est pertinent. Le jury attend d’autres exemples que la traditionnelle suite récurrente $u_{n+1} = \sin(u_n)$ (dont il est souhaitable de savoir expliquer les techniques sous-jacentes).
La nouvelle formulation de cette leçon, qui sera en vigueur en 2017, invite à évoquer les problématiques de convergence d’algorithmes (notamment savoir estimer la vitesse), d’approximation de solutions de problèmes linéaires et non linéaires : dichotomie, méthode de Newton, algorithme du gradient, méthode de la puissance, méthodes itératives de résolution de systèmes linéaires, schéma d’Euler, ...
L’aspect vectoriel est souvent négligé. Par exemple, le jury attend des candidats qu’ils répondent de façon pertinente à la question de la généralisation de l’algorithme de Newton au moins dans $R^2$, voire $R^n$.