Soient $P,Q \in \mathbb{C}[X,Y]$ sans facteur commun (i.e. $\mathsf{pgcd}_{\mathbb{C}[X][Y]} (P,Q) = 1$). Soit $d$ le degré total de $P$ et $d'$ celui de $Q$. On note $V(P) = \{ (x,y) \in \mathbb{C}^2 : P(x,y) =0 \}$. Alors
\[
| V(P) \bigcap V(Q) | \le dd'
\]