Leçon 223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.

(2014) 223
(2016) 223

Dernier rapport du Jury :

(2015 : 223 - Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.) Le théorème de Bolzano-Weierstrass doit être cité et le candidat doit être capable d'en donner une démonstration. On attend des candidats qu'ils parlent des limites inférieure et supérieure d'une suite réelle (bornée), et qu'ils en maîtrisent le concept.

Plans/remarques :

Pas de plans pour cette leçon.

Retours d'oraux :

2015 : Leçon 223 - Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.

  • Leçon choisie :

    223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.

  • Autre leçon :

    209 : Approximation d'une fonction par des polynômes et des polynômes trigonométriques. Exemples et applications.

  • Développement choisi : (par le jury)

    Pas de réponse fournie.

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Il n'y a pas eu beaucoup d'exercices, ils étaient moyens sans indication, faciles avec.

    Exo 1 : Sauriez-vous montrer que $u_n=\sum_{k=0}^n\frac{1}{k!}$ converge en n'utilisant aucun outil théorique sur les séries ?

    Indication : Considérer $v_n=u_n+\frac{1}{n(n!)}$

    Exo 2 : On considère $(u_n)$ une suite réelle positive telle que : $\forall n,p\in N, u_{n+p}\leq u_n+u_p$. Montrer que $\frac{u_n}{n}$ converge

    Indication : Montrer que ça converge vers $inf \frac{u_n}{n}$

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    J'ai eu pas mal de questions sur mon plan, beaucoup de petites questions qui me faisaient approfondir des items de mon plan. Un des membres du jury (Torossian crois-je) est beaucoup revenu sur le fait que j'avais parlé de suites de v.a réelles dans mon plan.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    L'oral était pas terrible, je me suis planté en faisant Stirling ce qui est loin d'être glorieux. Sinon le jury était neutre, il ne semblait ni emballé ni lassé.

  • Note obtenue :

    12.75


Références utilisées dans les versions de cette leçon :