Tout endomorphisme $f$ s'écrit, sous réserve que $\chi_f$ soit scindé dans $K$, sous la forme $f = d + n$ où $d$ est un endomorphisme diagonalisable et $n$ un endomorphisme nilpotent.
Il existe une démonstration non algorithmique de cette décomposition.
Soit K un corps de caractéristique nulle et soit A une matrice de $M_n(K)$, de polynôme caractéristique $\chi_A$ et de décomposition de Dunford $D+N$. On pose $P:= \frac{\chi_A }{\chi_A\wedge\chi_{A}' }$ et l'on considère la suite de matrices $(A_r)$ donnée par
$$ A_0=A, \quad A_{r+1}=A_r-P(A_r)P'(A_r)^{-1}$$
Alors, cette suite est bien définie, elle est stationnaire et tend vers D. (Plus précisément, $A_m=D$ pour tout $m\geq \log_2(n)$