
Anaël Marit ENS Rennes

NORME D’UN ÉLÉMENT ALGÉBRIQUE
- [148, 150, 151, 159] –

—

Ce développement est une idée de Matoumatheux, un grand merci à elle pour cette chouette
proposition :)

Ce document est très long, mais il ne faut évidemment pas tout faire. Voici un petit préambule
qui en explique la structure. J’ai décomposé le développement en trois parties et deux annexes de
la façon suivante :

1. Dans une première partie, on va introduire la norme d’un élément d’une extension finie de
corps, et en établir les propriétés les plus élémentaires. Cette partie est à traiter quelque
soit le chemin que vous souhaitez emprunter car tout le reste en dépend.

2. La seconde partie applique ces résultats pour caractériser le fait d’être un carré dans un
corps fini de caractéristique impaire. Je n’ai pas de référence à fournir, mais elle n’est pas
très difficile. Je la traite uniquement pour la leçon 123, mais c’est une affaire de goût, elle
se fait très bien en 125 et 149 aussi.

3. La troisième partie aborde la théorie des nombres : on va utiliser la norme pour caractériser
les inversibles de l’anneau des entiers d’un corps de nombres. Cette partie demande plus
de bagage théorique que la précédente, mais est particulièrement satisfaisante une fois maî-
trisée. Elle est excellente pour la 144 (petite pépite d’utilisation des polynômes symétriques
élémentaires) et la perturbante 127. Selon vos goûts, elle est également très bien pour la
125 et la 149.

4. Une première annexe où je montre un lemme que j’utilise sans démonstration dans la
première partie : le polynôme minimal et le polynôme caractéristique d’un endomorphisme
ont les mêmes facteurs irréductibles.

5. Une deuxième annexe où je prouve de façon élémentaire que l’ensemble des entiers d’un
corps de nombre est bel et bien un anneau, indisensable à savoir montrer pour la partie 3.

J’ai essayé autant que possible de développer des arguments un peu différents de ceux de Matou-
matheux lorsque c’était possible, mais n’hésitez pas à aller voir son document pour choisir les
techniques qui vous plaisent le plus !

Etant donnée une extension de corps L/K et x ∈ L un élément algébrique sur K, on notera
πL/K,x son polynôme minimal à coefficients dans K. Si f est un endomorphisme K-linéaire d’un
K-espace vectoriel de dimension finie, on notera χf son polynôme caractéristique.

Pour un polynôme P ∈ K[X], on note Z(P,L) l’ensemble de ses racines contenues dans L.

Norme d’un élément algébrique
Dans toute cette partie, on fixe L/K une extension finie. Notons n := [L : K] son degré.

J’utilise [3], paragraphe 4.5 en référence, mais vous pouvez également trouver ces choses là dans
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[2].

Définition 1 (Norme). Soit α ∈ L. On définit l’application :

mα : L → L

x 7→ αx

C’est une application K-linéaire. On définit alors la norme de α par :

NL/k(α) := det(mα) ∈ K (1)

Avant d’aller plus loin, remarquons ceci :

Lemme 2. L’application :

L → LK(L)

α 7→ mα

est un morphisme injectif de K-algèbres.

Démonstration. Soit λ ∈ K, (α, β) ∈ L2. On a alors :

∀x ∈ L, mλα+β(x) = (λα+ β)x = λmα(x) +mβ(x) (2)

Donc m est K-linéaire. De plus :

∀x ∈ L, mαβ(x) = αβx = mα ◦mβ(x) (3)

m est donc bien un morphisme de K-algèbres. Par ailleurs, si α ∈ Ker(m) :

0 = mα(1) = α (4)

Donc ce morphisme est injectif. □

On peut maintenant établir quelques propriétés de la norme :
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Proposition 3 (Propriétés de la norme).
1. La norme est multiplicative, c’est-à-dire :

∀(α, β) ∈ L2, NL/K(αβ) = NL/K(α)NL/K(β) (5)

2. Soit α ∈ L. Notons d := deg(πL/K,α). On a alors :

NL/K(α) = (−1)n
[
πL/K,α(0)

]n/d (6)

3. Si M/L est une extension telle que πL/K,α est scindé sur M , on a :

NL/K(α) =

 ∏
ω∈Z(πL/K,α,M)

ωkω

n/d

(7)

où kω est la multiplicité de la racine ω (i).

Démonstration.
1. C’est une conséquence directe du lemme précédent et de la multiplicativité du déterminant.

Prenons (α, β) ∈ L2. On a alors :

NL/K(αβ) = det(mαβ) = det(mα ◦mβ) = det(mα) det(mβ) (8)

d’où le résultat.
2. Commençons par remarquer que le polynôme minimal de mα (en tant qu’application K-

linéaire) est πL/K,α. En effet :

∀P ∈ K[X], P (mα) = 0 ⇐⇒ mP (α) = 0 ⇐⇒ P (α) = 0 (9)

Donc l’annulateur de mα est également celui de α, et nécessairement les polynômes mini-
maux coïncident.
On utilise désormais le fait que le polynôme caractéristique et le polynôme minimal d’un
endomorphisme ont les mêmes facteurs irréductibles (ii). Dans ce cas précis, cela donne
quelque chose de très fort, car πL/K,α est irréductible dans K[X]. Donc χmα

est une puis-
sance de πL/K,α, et par comparaison des degrés, on a immédiatement :

χmα = π
n/d
L/K,α (10)

Or on utilise fréquemment en algèbre linéaire le fait que le terme constant du poynôme
caractéristique est, au signe près, le déterminant. Donc :

NL/K(α) = (−1)nχmα(0) = (−1)nπL/K,α(0)
n/d (11)

3. C’est une conséquence directe de notre travail précédent, puisque le déterminant est le
produit des racines du polynôme caractéristique, qui ici sont celles du polynôme minimal.

□

(i). Je me permets une petite remarque à ce sujet parce que je me fais régulièrement avoir : un polynôme
irréductible n’est pas nécessairement, en tout généralité, à racines simples dans une extension de décomposition
(mais ça n’arrive qu’en caractéristique positive et dans le cas où le morphisme de Frobenius n’est pas surjectif sur
K).
(ii). Vous en doutez ? On se retrouve en annexe !
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Carrés dans un corps fini
Je n’ai pas de référence pour cette partie, mais elle n’est pas très difficile et je pense qu’elle

peut être retrouvée en connaissant le résultat.

Soit p un nombre premier, n un entier non nul et q = pn. On note Fq le corps à q-éléments.

Proposition 4. Soit x ∈ Fq. On a :

NFq/Fp
(x) = x

q−1
p−1 (12)

Démonstration. Soit α ∈ F×
q un générateur du groupe multiplicatif de Fq. On va commencer par

montrer ce résultat pour α, et on en déduira facilement le cas général par multiplicativité de la
norme.

On a Fq = Fp(α), donc deg(πFq/Fp,α) = [Fq : Fp] = n. De plus, le morphisme de Frobe-
nius Frobp est d’ordre n dans le groupe des automorphismes de l’extension Fq/Fp. Par ailleurs,
l’application :

AutFp
(Fq) → Z(πFq/Fp,α,Fq)

Φ 7→ Φ(α)

est injective car α est un élément primitif de l’extension. Donc AutFp
(Fq) est engendré par

Frobp, πFq/Fp,α est scindé à racines simples dans Fq et ses racines sont données par les itérées du
Frobenius appliquées à α. Ainsi, on peut appliquer le dernier point de la proposition 3 :

NFq/Fp
(α) =

[
n−1∏
k=0

Frob◦kp (α)

]n/n

(13)

=

n−1∏
k=0

αpk

(14)

= α
∑n−1

k=0 pk

(15)

= α
pn−1
p−1 (16)

= α
q−1
p−1 (17)

Prenons maintenant x ∈ F×
q . Puisque α engendre le groupe multiplicatif de Fq, il existe k ∈ N

tel que x = αk. Donc :

NFq/Fp
(x) = NFq/Fp

(αk) = NFq/Fp
(α)k = (αk)

q−1
p−1 = x

q−1
p−1 (18)

Enfin, la formule est clairement vraie pour x = 0, ce qui achève notre démonstration. □

On peut enfin démontrer le théorème portant sur les carrés de Fq :
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Théorème 5 (Caractérisation des carrés de Fq). Soit x ∈ Fq. Les assertions suivantes
sont équivalentes :

1. x est un carré dans Fq

2. NFq/Fp
(x) est un carré dans Fp.

Démonstration. Traitons tout d’abord le cas de la caractéristique 2. Celui-ci est trivial car le
passage au carré correspond alors au morphisme de Frobenius. C’est donc un morphisme de
corps (donc injectif), et nécessairement, c’est une bijection. Donc tous les éléments de Fq (et de
Fp) sont des carrés.

On suppose désormais que p est impair. Si x = 0, le résultat est évident. Supposons
x ̸= 0. On va utiliser la caractérisation suivante :

Lemme 6. Soit K un corps fini de cardinal r impair. Les carrés de K× sont exactement
les racines de X

r−1
2 .

Il suffit en effet de considérer le morphisme de groupes :

K× → K×

y 7→ y2

Celui-ci est évidemment surjectif dans le groupe des carrés, et son noyau est {−1, 1}, donc de
cardinal 2 car r est impair. Ainsi, par premier théorème d’isomorphisme, le groupe des carrés

inversibles est isomorphe au quotient de K× par ce noyau, et est donc de cardinal
r − 1

2
.

De plus, si y = z2 est un carré inversible, on a :

y
r−1
2 = zr−1 = 1 (19)

par théorème de Lagrange. Tous les carrés inversibles sont donc racines de X
r−1
2 − 1 et par

cardinalité, toutes les racines de ce polynômes sont des carrés inversibles.

Ce lemme en poche, le résultat tombe de suite. On a en effet l’égalité :

x
q−1
2 =

(
x

q−1
p−1

) p−1
2

(20)

et donc il est clair que x est un carré dans Fq si, et seulement si, NFq/Fp
est un carré dans Fp. □

Remarque : On est en droit de se demander en quoi avoir rammené le problème à détecter les
carrés de Fp nous avance. Il se trouve qu’on a une procédure algorithmique exploitant la loi de
réciprocité quadratique pour détecter les carrés de Fp. De plus, les éléments de Fp sont quand
même moins sauvages que ceux de Fq, car il s’agit de simples classes de congruence d’entiers,
mais je laisse ces considérations aux options C ! ♦
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Caractérisation des inversibles dans l’anneau des entiers d’un
corps de nombres

Là encore, une proposition de Matoumatheux pour laquelle je n’ai pas de référence à fournir.
Personnellement, c’est ma partie préférée du développement, mais elle est clairement plus tech-
nique que la partie sur les carrés dans les corps finis...

Commençons par quelques définitions pour fixer les idées. On se donne K un corps de nombres,
c’est-à-dire une extension finie de Q. Comme on ne travaillera qu’avec des extensions de Q dans
cette partie, j’ai simplifié les notations : toutes les normes et tous les polynômes minimaux
considérés sont sur Q.

Définition 7 (Entiers sur K). Un nombre complexe z ∈ K est dit entier sur K s’il existe
un polynôme unitaire à coefficients dans Z qui annule z.
On note OK l’ensemble des entiers de K. C’est un sous-anneau de K (iii).

Lemme 8. Soit z ∈ K. Les assertions suivantes sont équivalentes :
1. z ∈ OK

2. πz ∈ Z[X]

Démonstration. Le sens réciproque est immédiat, on se contentera donc du sens direct. Pour cela,
on va utiliser le lemme de Gauss affirmant que le contenu d’un polynôme est multiplicatif (iv).
Soit P un polynôme unitaire de Z[X] annulant z. Par définition du polynôme minimal :

∃Q ∈ Q[X] : P = πzQ (21)

On va chasser les dénominateurs : soient r et s deux entiers non nuls tels rπz ∈ Z[X] et sQ ∈ Z[X].
Comme P et πz sont unitaires, Q l’est également. Ainsi, le contenu de rπz (resp. de sQ) divise
r (resp. s). Quitte à diviser par le contenu, on peut supposer rπz et sQ primitifs (c’est-à-dire de
contenu 1). Mais alors, par multiplicativité du contenu :

C(rsP ) = C(rπz)C(sQ) (22)

Comme P est primitif (puisqu’il est unitaire) :

rs = 1 (23)

r et s étant entiers, ils valent ±1 et donc πz ∈ Z[X]. □

On en arrive au résultat qui nous intéresse :

(iii). Ça n’est pas trivial ! Soyez sûr.e de savoir démontrer cela avant de vous embarquer dans cette preuve. J’ai
ajouté une démonstration en annexe.
(iv). Il est possible de faire une démonstration plus élémentaire, mais cette méthode se rencontre assez fréquem-
ment pour résoudre d’autres problèmes, c’est pourquoi j’ai trouvé intéressant de présenter cette preuve-ci.
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Théorème 9 (Caractérisation des inversibles de OK). Soit z ∈ K. Les assertions
suivantes sont équivalentes :

1. z ∈ O×
K

2. N(z) = ±1

Démonstration. On note d le degré de πz et n := [K : Q].
Dans le sens direct : on exploite la multiplicativité de la norme. On a en effet

N(zz−1) = N(1) = 1 = N(z)N(z−1) (24)

Or la norme d’un entier algébrique est un entier, car d’après la proposition 3, c’est au signe
près une puissance du terme constant du polynôme minimal, qui est à coefficients dans Z
d’après le lemme précédent.

Dans le sens indirect : on considère z1, . . . , zd les conjugués de x (c’est-à-dire les différentes
racines de πz dans C) (v). Quitte à permuter, on suppose z = z1. En exploitant la proposition
3, on a :

N(z1) =

[
d∏

i=1

zi

]n/d

= z
n/d
1

[
d∏

i=2

zi

]n/d

= ±1 (25)

Ainsi, l’élément

[
d∏

i=2

zi

]n/d

, est, au signe près, l’inverse de z1, et c’est donc un élément de

K. On considère le polynôme suivant :

P :=

d∏
j=1

X −
d∏

i=1
i ̸=j

T
n/d
i

 ∈ Z[X][T1, . . . , Td] (26)

Ce polynôme est symétrique en les (Ti). Par théorème de structure des polynômes symé-
triques, il existe un polynôme R ∈ Z[X][S1, . . . , Sd] tel que :

P (X) = R(σd,1(T1, . . . , Td), . . . , σd,d(T1, . . . , Td)) (27)

où les (σd,k) sont les polynômes symétriques élémentaires en d indéterminées. En évaluant
les (Ti) en les (zi), il vient :

P (z1, . . . , zd) =

d∏
j=1

X −
d∏

i=1
i̸=j

z
n/d
i

 ∈ Z[X] (28)

car les (zi) étant les racines d’un polynômes de Z[X], les fonctions symétriques élémentaires
appliquées en les (zi) renvoient des entiers. Ce polynôme est unitaire et annule clairement

(v). Deux petites remarques qu’il est important d’avoir en tête :
1. Il y a bien d conjugués différents ! πz est irréductible et on travail en caractéristique 0, donc il est premier

avec son polynôme dérivé.
2. Les conjugués de z n’ont aucune raison a priori d’être dans K.
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d∏
i=2

z
n/d
i : cet élément est un entier de K et zn/d ∈ O×

k . Cela implique bien que zn/d est

dans O×
K .

□

Annexe I : facteurs irréductibles du polynôme caractéristique
On a utilisé en chemin un résultat plus ou moins classique, que je me propose de démontrer

avec des outils très élémentaires. Notez que dans la preuve de Matoumatheux (ainsi que celles de
Gozard et de Tauvel), on évite ce résultat d’une habile pirouette qui repose sur le théorème de la
base télescopique. Une affaire de goût, sans doute.

Lemme 10. Soit E un K-espace vectoriel de dimension finie. Soit f ∈ L (E). Les po-
lynômes minimal πf et caractéristique χf de f ont les mêmes facteurs irréductibles dans
K[X].

Démonstration. Le théorème de Cayley-Hamilton implique que πf |χf , donc χf est divisé par
tous les facteurs irréductibles de πf . Réciproquement, notons :

χf =

r∏
i=1

Pαi
i (29)

où les (Pi) sont des polynômes deux à deux distincts, irréductibles dans K[X]. Par le lemme des
noyaux et le théorème de Cayley-Hamilton :

E =

r⊕
i=1

Ker(Pαi
i (f)) (30)

Notons fi l’endomorphisme induit sur Ei := Ker(Pαi
i (f)) et πi son polynôme minimal. Il est

immédiat que πf et Pαi
i annulent fi, d’où :

πi|π et πi|Pαi
i (31)

Comme Pi est irréductible, on a donc que πi est une puissance (non-nulle) de Pi, et donc Pi|π,
ce qui achève la preuve ! □

Annexe II - Ok est un anneau
Il n’est pas tout à fait évident de montrer que l’ensemble des entiers sur un corps de nombres

est un anneau. Dans la littérature, j’ai trouvé essentiellement deux preuves : l’une utilisant les
résultants (chose que j’ai voulu absolument éviter car c’est lourd, pénible et pas au programme
si vous ne faites option C ; elle a toutefois l’avantage de construire explicitement des polynômes
annulateurs), l’autre utilisant des notions de théorie des modules (largement hors-programme
donc, mais cela ressemble plus à ce que l’on fait pour prouver qu’une somme et un produit
d’éléments algébriques est encore algébrique ; voir [1]). Un ami m’a suggéré une preuve beaucoup
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RÉFÉRENCES RÉFÉRENCES

plus élémentaire, qui ne repose que sur les polynômes symétriques. Cependant, je n’ai pas trouvé
de référence pour cette preuve. C’est celle que je vais présenter ici, dans un cadre très général,
car c’est la plus simple et sûrement la moins connue.

Proposition 11 (OK est un anneau). Soit A un anneau intègre de corps des fractions
K et L/K une extension. On note O l’ensemble des éléments de L qui sont annulés par un
polynôme unitaire à coefficients dans A. C’est un anneau.

Démonstration. Notons qu’il est clair que O contient 0 et 1.
Soient x et y deux entiers sur A. Soient P et Q des polynômes unitaires de A[X] annulant

respectivement x et y. Quitte à plonger L dans des extensions de décomposition successives, on
peut supposer que P et Q sont scindés dans L, de racines (x1, . . . , xp) et (y1, . . . , yq). On note
Z := {x1, . . . , xp} ∪ {y1, . . . , yq}.

Stabilité par somme : On considère le polynôme :

S :=
∏

(a,b)∈Z2

(X − (a+ b)) (32)

Il s’agit d’un polynôme dont les coefficients sont symétriques en les éléments de Z. Or
Z est l’ensemble des racines du polynôme PQ ∈ A[X]. Une application du théorème de
structure des polynômes symétriques prouve que S est à coefficients dans A. Comme il
annule clairement x+ y, on a x+ y ∈ O.

Stabilité par produit : Le raisonnement est similaire. On pose :

S :=
∏

(a,b)∈Z2

(X − ab) (33)

qui est encore un polynôme unitaire à coefficients dans A, et S annule xy.

□

Remarque : Cette preuve, outre qu’elle ne repose sur pas grand’chose une fois qu’on a bien
compris la démarche, permet d’obtenir beaucoup de résultats classiques qu’il n’est pas toujours
évident de démontrer, par exemple Q̄ est un corps, l’ensemble des entiers algébriques de C est un
anneau, etc. Avouez que c’est plus chouette que des vilains résultants non ? En plus ça se recase
à merveille dans la 144 ! ♦
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