Anaél Marit ENS Rennes

NORME D’UN ELEMENT ALGEBRIQUE
- [148, 150, 151, 159] —

Ce développement est une idée de Matoumatheuz, un grand merci a elle pour cette chouette
proposition :)

Ce document est trés long, mais il ne faut évidemment pas tout faire. Voici un petit préambule
qui en explique la structure. J’ai décomposé le développement en trois parties et deuxr annexes de
la fagon suivante :

1. Dans une premiére partie, on va introduire la norme d’un élément d’une extension finie de
corps, et en établir les propriétés les plus élémentaires. Cette partie est & traiter quelque
soit le chemin que vous souhaitez emprunter car tout le reste en dépend.

2. La seconde partie applique ces résultats pour caractériser le fait d’étre un carré dans un
corps fini de caractéristique impaire. Je n’ai pas de référence a fournir, mais elle n’est pas
tres difficile. Je la traite uniquement pour la legon 123, mais c’est une affaire de godt, elle
se fait tres bien en 125 et 149 aussi.

3. La troisiéme partie aborde la théorie des nombres : on va utiliser la norme pour caractériser
les inversibles de ’anneau des entiers d’un corps de mombres. Cette partie demande plus
de bagage théorique que la précédente, mais est particuliérement satisfaisante une fois mai-
trisée. Elle est excellente pour la 144 (petite pépite d’utilisation des polynomes symétriques
élémentaires) et la perturbante 127. Selon vos godits, elle est également trés bien pour la
125 et la 149.

4. Une premiére annexe ot je montre un lemme que j'utilise sans démonstration dans la
premiére partie : le polynome minimal et le polynome caractéristique d’un endomorphisme
ont les mémes facteurs irréductibles.

5. Une deuxiéme annexe ow je prouve de facon élémentaire que ’ensemble des entiers d’un
corps de nombre est bel et bien un anneau, indisensable & savoir montrer pour la partie 5.

J’ai essayé autant que possible de développer des arguments un peu différents de ceuxr de Matou-
matheux lorsque c’était possible, mais n’hésitez pas & aller voir son document pour choisir les
techniques qui vous plaisent le plus !

Etant donnée une extension de corps L/K et € L un élément algébrique sur K, on notera
TL/K, SO0 polynéme minimal & coefficients dans K. Si f est un endomorphisme K-linéaire d’un
K-espace vectoriel de dimension finie, on notera x s son polynéme caractéristique.

Pour un polynéme P € K[X], on note Z(P, L) 'ensemble de ses racines contenues dans L.

Norme d’un élément algébrique

Dans toute cette partie, on fixe L/K une extension finie. Notons n := [L : K| son degré.
J'utilise [3], paragraphe 4.5 en référence, mais vous pouvez également trouver ces choses 1a dans
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2].
Définition 1 (Norme). Soit « € L. On définit Uapplication :

Mo : L — L
T = ax

C’est une application K-linéaire. On définit alors la norme de o par :

Npi(a) := det(mg) € K

Avant d’aller plus loin, remarquons ceci :

Lemme 2. L’application :

Q> Mg,

est un morphisme injectif de K-algébres.

Démonstration. Soit A\ € K, (a, ) € L. On a alors :
Vr € L, mya1s(z) = Aa+ B)z = dmy(x) + ma(x)
Donc m est K-linéaire. De plus :
Vo € L, mag(x) = afz = mq o mg(x)
m est donc bien un morphisme de K-algébres. Par ailleurs, si o € Ker(m) :
0=my(1l) =«
Donc ce morphisme est injectif.

On peut maintenant établir quelques propriétés de la norme :

Contactez-moi en cas de coquille & prénom.nom@ens-rennes.fr !



Proposition 3 (Propriétés de la norme).

1. La norme est multiplicative, c’est-a-dire :
Y(a, B) € L?, Ny /x(aB) = Nk (@)Np x(B) (5)

2. Soit o € L. Notons d := deg(7r ko). On a alors :

o n/d
Npjk (@) = (=1)" [71/k,4(0)] (6)
8. 8Si M/L est une extension telle que 7,k o est scindé sur M, on a :

n/d

Np/x(a) = H whe (7)

WEZ(TL /K, 0, M)

ot k,, est la multiplicité de la racine w @

Démonstration.
1. C’est une conséquence directe du lemme précédent et de la multiplicativité du déterminant.
Prenons (a, ) € L. On a alors :
Np/k(aB) = det(mag) = det(mq 0 mg) = det(mg) det(mp) (8)
d’ou le résultat.
2. Commengons par remarquer que le polyndéme minimal de m, (en tant qu’application K-
linéaire) est 77, /x . En effet :
VP € K[X], P(my) =0 <= mp) =0 <= P(a)=0 (9)
Donc 'annulateur de m, est également celui de «, et nécessairement les polynémes mini-
maux coincident.

On utilise désormais le fait que le polynéme caractéristique et le polynéme minimal d’un
endomorphisme ont les mémes facteurs irréductibles . Dans ce cas précis, cela donne
quelque chose de trés fort, car 7y o est irréductible dans K[X]. Donc ., est une puis-
sance de 7y o, et par comparaison des degrés, on a immédiatement :

n/d
Xma = WL?K,a (10)

Or on utilise fréequemment en algébre linéaire le fait que le terme constant du poynéme
caractéristique est, au signe prés, le déterminant. Donc :

Npjk(a) = (=1)"Xm, (0) = (*1)n7TL/K,a(0)n/d (11)

3. C’est une conséquence directe de notre travail précédent, puisque le déterminant est le
produit des racines du polynoéme caractéristique, qui ici sont celles du polynéme minimal.

O

(i). Je me permets une petite remarque a ce sujet parce que je me fais réguliérement avoir : un polynoéme
irréductible n’est pas nécessairement, en tout généralité, a racines simples dans une extension de décomposition
(mais ¢a n’arrive qu’en caractéristique positive et dans le cas ou le morphisme de Frobenius n’est pas surjectif sur
K).

(ii). Vous en doutez? On se retrouve en annexe!
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Carrés dans un corps fini

Je n’ai pas de référence pour cette partie, mais elle n’est pas trés difficile et je pense qu’elle
peut étre retrouvée en connaissant le résultat.

Soit p un nombre premier, 7 un entier non nul et ¢ = p™. On note F, le corps & ¢g-éléments.

Proposition 4. Soit x € Fy. On a :

qg—1

N]Fq/ﬂrp(l') =xr-1 (12)

Démonstration. Soit o € IFqX un générateur du groupe multiplicatif de F,. On va commencer par
montrer ce résultat pour a, et on en déduira facilement le cas général par multiplicativité de la
norme.

On a F, = Fy(a), donc deg(ng, /r,.o) = [Fq : Fp] = n. De plus, le morphisme de Frobe-
nius Frob,, est d’ordre n dans le groupe des automorphismes de extension F,/F,. Par ailleurs,
Iapplication :

Auty, (Fy) = Z(7r, /¥, 0> Fq)
® — O(a)
est injective car a est un élément primitif de I'extension. Donc Autp, (F,) est engendré par

Froby, mr, /v, o est scindé a racines simples dans Fy et ses racines sont données par les itérées du
Frobenius appliquées a «. Ainsi, on peut appliquer le dernier point de la proposition 3 :

n—1 n/n
Nr,/r, () = lH Frob;k(a)] (13)
k=0
n—1 .
=[] (14)
k=0
— qXi=o " (15)
= ap::ll (16)
= ot (17)

Prenons maintenant x € IE‘qX. Puisque o engendre le groupe multiplicatif de Fy, il existe k € N
tel que z = a*. Donc :

Ny, p,(2) = Ny m, (6F) = Np_jr (0)F = (oF)r=1 =21 (18)
Enfin, la formule est clairement vraie pour z = 0, ce qui achéve notre démonstration. O

On peut enfin démontrer le théoréme portant sur les carrés de [Fy :
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Théoréme 5 (Caractérisation des carrés de F,). Soit x € F,. Les assertions suivantes
sont équivalentes :

1. z est un carré dans Fy

2. Ny, /F, (%) est un carré dans IF,.

Démonstration. Traitons tout d’abord le cas de la caractéristique 2. Celui-ci est trivial car le
passage au carré correspond alors au morphisme de Frobenius. C’est donc un morphisme de
corps (donc injectif), et nécessairement, c’est une bijection. Donc tous les éléments de F,; (et de
F,) sont des carrés.

On suppose désormais que p est impair. Si x = 0, le résultat est évident. Supposons
x # 0. On va utiliser la caractérisation suivante :

Lemme 6. Soit K un corps fini de cardinal v impair. Les carrés de K* sont exactement
. r—1
les racines de X 2 .

11 suffit en effet de considérer le morphisme de groupes :
K* — K~
y—y’

Celui-ci est évidemment surjectif dans le groupe des carrés, et son noyau est {—1,1}, donc de

cardinal 2 car r est impair. Ainsi, par premier théoréme d’isomorphisme, le groupe des carrés
r—

inversibles est isomorphe au quotient de K* par ce noyau, et est donc de cardinal

De plus, si y = 22 est un carré inversible, on a :

y T o= =1 (19)

r=1
par théoréeme de Lagrange. Tous les carrés inversibles sont donc racines de X 2 — 1 et par
cardinalité, toutes les racines de ce polynémes sont des carrés inversibles.

Ce lemme en poche, le résultat tombe de suite. On a en effet 1’égalité :

1 N
q% = (gjgfl) 2 (20)
et donc il est clair que x est un carré dans F, si, et seulement si, Ng_/p, est un carré dans ;. []

Remarque : On est en droit de se demander en quoi avoir rammené le probléme a détecter les
carrés de IF,, nous avance. Il se trouve qu’'on a une procédure algorithmique exploitant la loi de
réciprocité quadratique pour détecter les carrés de IF,,. De plus, les éléments de IF,, sont quand
méme moins sauvages que ceux de [y, car il s’agit de simples classes de congruence d’entiers,
mais je laisse ces considérations aux options C! ¢

Contactez-moi en cas de coquille & prénom.nom@ens-rennes.fr !



Caractérisation des inversibles dans I’anneau des entiers d’un
corps de nombres
La encore, une proposition de Matoumatheuz pour laquelle je n’ai pas de référence & fournir.

Personnellement, c¢’est ma partie préférée du développement, mais elle est clairement plus tech-
nique que la partie sur les carrés dans les corps finis...

Commencgons par quelques définitions pour fixer les idées. On se donne K un corps de nombres,
c’est-a-dire une extension finie de Q. Comme on ne travaillera qu’avec des extensions de Q dans
cette partie, j’ai simplifié les notations : toutes les normes et tous les polynémes minimaux
considérés sont sur Q.

Définition 7 (Entiers sur K). Un nombre compleze z € K est dit entier sur K s’il existe
un polyndme unitaire o coefficients dans Z qui annule z.
On note O g lensemble des entiers de K. C’est un sous-anneau de K 1.

Lemme 8. Soit z € K. Les assertions suivantes sont équivalentes :
1. z€ Ok
2. 7, € Z[X]

Démonstration. Le sens réciproque est immeédiat, on se contentera donc du sens direct. Pour cela,
on va utiliser le lemme de Gauss affirmant que le contenu d’un polynoéme est multiplicatif *).
Soit P un polynome unitaire de Z[X] annulant z. Par définition du polynéme minimal :

3Q € Q[X] : P=m7.Q (21)

On va chasser les dénominateurs : soient r et s deux entiers non nuls tels 7, € Z[X] et sQ € Z[X].
Comme P et 7, sont unitaires, @) l'est également. Ainsi, le contenu de rm, (resp. de sQ) divise
r (resp. s). Quitte & diviser par le contenu, on peut supposer 77, et s primitifs (c’est-a-dire de
contenu 1). Mais alors, par multiplicativité du contenu :

C(rsP) = C(rm,)C(sQ) (22)

Comme P est primitif (puisqu’il est unitaire) :
rs=1 (23)
r et s étant entiers, ils valent +1 et donc 7, € Z[X]. O

On en arrive au résultat qui nous intéresse :

(iii). Ga n’est pas trivial! Soyez sir.e de savoir démontrer cela avant de vous embarquer dans cette preuve. J’ai
ajouté une démonstration en annexe.

(iv). Il est possible de faire une démonstration plus élémentaire, mais cette méthode se rencontre assez fréquem-
ment pour résoudre d’autres problémes, c’est pourquoi j’ai trouvé intéressant de présenter cette preuve-ci.
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Théoréme 9 (Caractérisation des inversibles de Og). Soit z € K. Les assertions
sutvantes sont équivalentes :

1. ze O
2. N(z) = 1

Démonstration. On note d le degré de m, et n:= [K : Q).

Dans le sens direct : on exploite la multiplicativité de la norme. On a en effet

N(zz7')=N@1)=1=N(2)N(z"}) (24)

Or la norme d’un entier algébrique est un entier, car d’aprés la proposition 3, c’est au signe
prés une puissance du terme constant du polynéme minimal, qui est & coefficients dans 7Z
d’apreés le lemme précédent.

Dans le sens indirect : on considére zq,. .., z4 les conjugués de x (c’est-a-dire les différentes

racines de 7, dans C) ™), Quitte & permuter, on suppose z = z1. En exploitant la proposition
3,on a:

d n/d d n/d
N(z) = [H zz] = zf/d lH ZZ} =+1 (25)
i=1 i=2

d n/d

Ainsi, I'élément lH zl] , est, au signe preés, I'inverse de z;, et c¢’est donc un élément de
i=2

K. On considére le polynome suivant :

d d
P=1]|x-T[z""| ezix)inr...., T4 (26)

j=1 =1

i#j

Ce polynome est symétrique en les (7;). Par théoréme de structure des polynomes symé-
triques, il existe un polynéome R € Z[X][S1, ..., S4] tel que :

P(X) = R(Cfdyl(Tl, e ,Td), e ,Ud,d(Tl; N ,Td)) (27)

ot les (04,%) sont les polynomes symétriques élémentaires en d indéterminées. En évaluant
les (T;) en les (z;), il vient :

d d
P(z,..za) = [ [ X =[] € zlx] (28)
j=1 1

i#]

car les (z;) étant les racines d’un polyndmes de Z[X], les fonctions symétriques élémentaires
appliquées en les (z;) renvoient des entiers. Ce polynome est unitaire et annule clairement

. Deux petites remarques qu’il est important d’avoir en téte :

Il y a bien d conjugués différents! 7, est irréductible et on travail en caractéristique 0, donc il est premier
avec son polyndéme dérivé.

Les conjugués de z n’ont aucune raison a priori d’étre dans K.
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d
H z?/d : cet élément est un entier de K et 2/ € ;. Cela implique bien que 24 est
1=2

dans O%.

O

Annexe I : facteurs irréductibles du polynéme caractéristique

On a utilisé en chemin un résultat plus ou moins classique, que je me propose de démontrer
avec des outils trés élémentaires. Notez que dans la preuve de Matoumatheux (ainsi que celles de
Gozard et de Tauvel), on évite ce résultat d’une habile pirouette qui repose sur le théoréeme de la
base télescopique. Une affaire de goit, sans doute.

Lemme 10. Soit E un K-espace vectoriel de dimension finie. Soit f € £(F). Les po-

lynémes minimal my et caractéristique Xy de f ont les mémes facteurs irréductibles dans
K[X].

Démonstration. Le théoréme de Cayley-Hamilton implique que m¢|xs, donc xy est divisé par
tous les facteurs irréductibles de 7. Réciproquement, notons :

xs=1]P" (29)
=1

ot les (P;) sont des polynémes deux a deux distincts, irréductibles dans K [X]. Par le lemme des
noyaux et le théoréme de Cayley-Hamilton :

E = @Ker(P(f) (30)

Notons f; 'endomorphisme induit sur F; := Ker(P;(f)) et m; son polynéme minimal. Il est
immeédiat que 7y et P annulent f;, d’ou :

m|m et m| P (31)

Comme P; est irréductible, on a donc que 7; est une puissance (non-nulle) de P;, et donc P;lm,
ce qui achéve la preuve! O

Annexe II - 9, est un anneau

1l n’est pas tout a fait évident de montrer que I’ensemble des entiers sur un corps de nombres
est un anneau. Dans la littérature, j’ai trouvé essentiellement deux preuves : 'une utilisant les
résultants (chose que j’ai voulu absolument éviter car c’est lourd, pénible et pas au programme
st vous ne faites option C'; elle a toutefois 'avantage de construire explicitement des polynomes
annulateurs), Uautre utilisant des notions de théorie des modules (largement hors-programme
donc, mais cela ressemble plus a ce que l'on fait pour prouver qu’une somme et un produit
d’éléments algébriques est encore algébrique ; voir [1]). Un ami m’a suggéré une preuve beaucoup
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plus élémentaire, qui ne repose que sur les polyndomes symétriques. Cependant, je n’ai pas trouvé
de référence pour cette preuve. C’est celle que je vais présenter ici, dans un cadre trés général,
car c’est la plus simple et sirement la moins connue.

Proposition 11 (O est un anneau). Soit A un anneau intégre de corps des fractions
K et L/K une extension. On note O l’ensemble des éléments de L qui sont annulés par un
polynéme unitaire & coefficients dans A. C’est un anneau.

Démonstration. Notons qu’il est clair que O contient 0 et 1.

Soient = et y deux entiers sur A. Soient P et ) des polynémes unitaires de A[X] annulant
respectivement z et y. Quitte a plonger L dans des extensions de décomposition successives, on
peut supposer que P et () sont scindés dans L, de racines (z1,...,2p) et (y1,...,¥yq). On note
Zi={x1,..., 2t U{y1,...,yq}

Stabilité par somme : On considére le polynéme :

si= I (X-(a+) (32)

(a,b)ez?

Il s’agit d’un polynéme dont les coefficients sont symétriques en les éléments de Z. Or
Z est Pensemble des racines du polynéme PQ € A[X]. Une application du théoréme de
structure des polyndomes symétriques prouve que S est a coefficients dans A. Comme il
annule clairement z 4+ y, on a x +y € O.

Stabilité par produit : Le raisonnement est similaire. On pose :

S= [ X-ab (33)

(a,b)eZz?

qui est encore un polynoéme unitaire a coefficients dans A, et S annule zy.

O

Remarque : Cette preuve, outre qu’elle ne repose sur pas grand’chose une fois qu’on a bien
compris la démarche, permet d’obtenir beaucoup de résultats classiques qu’il n’est pas toujours
évident de démontrer, par exemple Q est un corps, 'ensemble des entiers algébriques de C est un
anneau, etc. Avouez que c’est plus chouette que des vilains résultants non ? En plus ¢a se recase
& merveille dans la 144! ¢
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