102 : Groupe des nombres complexes de module 1. Racines de l'unité. Applications.

1. Groupe des nombres complexes de module 1.

1.1. L'ensemble U

Définition 1. Soit $z \in \mathbf{C}$. On appelle **module de** z le réel positif $|z| := \sqrt{z\overline{z}} = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$.

Définition 2. On définit $U := \{z \in \mathbb{C} \mid |z| = 1\}.$

Remarque 3. On note également cet ensemble S^1 , mettant en avant qu'il s'agit de la sphère unité du plan complexe.

Exemple 4. 1, -1, i, -i et $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ sont des éléments de **U**.

Proposition 5. L'ensemble **U**, muni de la multiplication complexe, forme un groupe.

1.2. Exponentielle complexe.

Théorème-Définition 6. La série entière $\sum_{n\in\mathbb{N}}\frac{z^n}{n!}$ possède un rayon de convergence infini et sa somme, définie sur \mathbb{C} , est appelée la fonction exponentielle complexe, notée exp, ou encore $z\mapsto \mathrm{e}^z$.

Proposition 7. Pour tous $z, t \in \mathbb{C}$, $e^{z+t} = e^z e^t$ et $\exp(\overline{z}) = \overline{\exp z}$.

Proposition 8. Pour tout $\theta \in \mathbf{R}$, $\cos \theta + i \sin \theta = \exp(i\theta)$.

Théorème 9. L'application $\theta \mapsto \exp(i\theta)$ réalise un morphisme de groupes continu et surjectif de $(\mathbf{R}, +)$ dans (\mathbf{U}, \times) et dont le noyau est $2\pi \mathbf{Z}$.

Corollaire 10. Les groupes $\mathbb{R}/2\pi\mathbb{Z}$ et U sont isomorphes.

Corollaire 11. Les sous-groupes de ${\bf U}$ sont soit cycliques, soit denses dans ${\bf U}$.

Proposition 12. L'ensemble **U** est une partie de **C** compacte et connexe par arcs.

Théorème 13. La fonction exponentielle complexe réalise un morphisme de groupes holomorphe et surjectif de $(\mathbf{C}, +)$ dans (\mathbf{C}^*, \times) et dont le noyau est $2i\pi\mathbf{Z}$.

Définition 14. On définit les fonctions cosinus et sinus complexes par :

Proposition 15. Pour tout $z \in \mathbb{C}$, $\cos^2(z) + \sin^2(z) = 1$.

Proposition 16 : Formule de Moivre. Pour tout $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, on a : $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$.

Exemple 17. Pour tout $\theta \in \mathbf{R}$, $\cos(5\theta) = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$.

Application 18. Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. On a :

$$\cos(n\theta) = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} (-1)^k \sin^{2k}(\theta) \cos^{n-2k}(\theta)$$

ef

$$\sin(n\theta) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} {n \choose 2k+1} (-1)^k \sin^{2k+1}(\theta) \cos^{n-(2k+1)}(\theta).$$

2. Racines de l'unité

Dans cette partie, n désigne un entier naturel non nul.

2.1. Le groupe des racines n-ièmes de l'unité

Définition 19. On définit $U_n := \{z \in \mathbb{C} \mid z^n = 1\}$. On l'appelle l'ensemble des racines *n*-ièmes de l'unité.

Exemple 20. $\mathbf{U}_1 = \{1\}, \ \mathbf{U}_2 = \{\pm 1\}, \ \mathbf{U}_3 = \{1, j, \bar{j}\}, \ \text{où } j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \ \mathbf{U}_4 = \{\pm 1, \pm i\}.$

Proposition 21. \mathbf{U}_n est un sous-groupe de \mathbf{U} de cardinal n et $\mathbf{U}_n = \left\{\exp(\frac{2\mathrm{i}k\pi}{n}): 0 \leq k < n\right\}$.

Définition 22. Soit $z \in \mathbb{C}$. On dit que z est une racine primitive n-ième Lemme 33. Soit $P, Q \in \mathbb{Q}[X]$ unitaires tels que $PQ \in \mathbb{Z}[X]$. Alors P et Q**de l'unité** si $z^n = 1$ et pour tout $d \in [1, n-1], z^d \neq 1$.

Proposition 23. Les racines primitives n-ièmes de l'unité sont les $\exp(2ik\pi/n)$ avec $k \in [1, n-1]$ et $k \wedge n = 1$.

Corollaire 24. U_n est un groupe cyclique d'ordre n engendré par une racine primitive n-ième de l'unité. Par conséquent, $\mathbf{U}_n \simeq \mathbf{Z}/n\mathbf{Z}$.

Proposition 25. L'ensemble \mathbf{U}_n^* des racines primitives n-ièmes de l'unité est une partie de U_n , de cardinal $\varphi(n)$, où φ désigne l'indicatrice d'Euler.

Exemple 26. $U_1^* = \{1\}, U_2^* = \{-1\}, U_3^* = \{j, \bar{j}\}, U_4^* = \{\pm i\}.$

Proposition 27. L'unicité de l'ordre d'un élément dans un groupe assure que

$$\mathbf{U}_n = \bigcup_{d|n} \mathbf{U}_d^*$$
 et donc $n = \sum_{d|n} \varphi(d)$.

2.2. Polynômes cyclotomiques

Définition 28. On appelle *n*-ième polynôme cyclotomique le polynôme

$$\Phi_n(X) := \prod_{\omega \in \mathbf{U}_n^*} (X - \omega)$$

Exemple 29. $\Phi_1 = X - 1$, $\Phi_2 = X + 1$, $\Phi_3 = X^2 + X + 1$, $\Phi_4 = X^2 + 1$, $\Phi_5 = X^4 + X^3 + X^2 + X + 1$, $\Phi_6 = X^2 - X + 1$.

Proposition 30. Soit p un nombre premier. On a : $\Phi_p(X) = 1 + X + \ldots + M$ X^{p-1} .

Proposition 31. Φ_n est un polynôme unitaire, de degré $\varphi(n)$ et l'on a $X^n - 1 = \prod_{d|n} \Phi_d(X).$

Remarque 32. On peut alors calculer les polynômes cyclotomiques par récurrence en écrivant :

$$\Phi_n(X) = \frac{X^n - 1}{\prod_{\substack{d \mid n \\ d \neq n}} \Phi_d(X)}$$

appartiennent à $\mathbf{Z}[X]$.

Théorème 34. Le polynôme Φ_n est à coefficients entiers.

Théorème 35. [DEV 1] Le polynôme Φ_n est irréductible dans $\mathbb{Q}[X]$.

Corollaire 36. [DEV 1] Soit $\omega \in \mathbf{U}_n^*$. Le polynôme minimal de ω sur \mathbf{Q} est Φ_n et $\mathbf{Q}(\omega)$ est une extension de \mathbf{Q} de degré $\varphi(n)$.

3. Applications

3.1. Rotations et angles orientés

Définition 37. Soit $z \in \mathbb{C}^*$ et $\theta \in \mathbb{R}$. On dit que θ est un argument de z si $\frac{z}{|z|} = \exp(i\theta)$.

Remarque 38. Ce réel θ est unique modulo 2π .

Définition 39. Soit $z \in \mathbb{C}^*$. On appelle argument principal de z l'unique réel $\theta \in [-\pi, \pi[$ tel que $\frac{z}{|z|} = \exp(i\theta)$ et l'on note $\theta = \arg(z)$.

Exemple 40. Pour tout x > 0, arg(x) = 0 et $arg(-x) = -\pi$, $\arg(i) = \frac{\pi}{2}, \arg(-i) = -\frac{\pi}{2} \text{ et } \arg(j) = \frac{2\pi}{3}.$

Définition 41. On note $SO_2(\mathbf{R}) := \left\{ R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbf{R} \right\}.$ C'est un groupe pour la multiplication matricielle.

Proposition 42. L'application $u = \exp(i \arg u) \in \mathbf{U} \mapsto R(\arg u) \in SO_2(\mathbf{R})$ est un isomorphisme de groupes.

Théorème 43. [DEV 2] Soit $n \in \mathbb{N}^*$. Les morphismes continus de U dans $GL_n(\mathbf{R})$ sont les applications :

$$e^{it} \mapsto Q \times \operatorname{diag}(R(tk_1), \dots, R(tk_r), I_{n-2r}) \times Q^{-1},$$

où $r \in \mathbf{N}, k_1, \dots, k_r \in \mathbf{Z}^*$ et $Q \in \mathrm{GL}_n(\mathbf{R})$.

Définition 44. On note $SO(\mathbf{C}) := \left\{ \rho_u : \begin{array}{ccc} \mathbf{C} & \rightarrow & \mathbf{C} \\ z & \mapsto & uz \end{array} \right. ; \ u \in \mathbf{U} \right\}$. Ses éléments sont appelés les rotations vectorielles du plan complexe.

Proposition 45. Dans la base (1,i) de \mathbb{C} , les matrices des rotations vectorielles du plan complexe sont les matrices de $SO_2(\mathbb{R})$.

Proposition 46. Les rotations vectorielles laissent U stable.

Théorème 47. L'application $u \in (\mathbf{U}, \times) \mapsto \rho_u \in (SO(\mathbf{C}), \circ)$ est un isomorphisme de groupes.

Défintion 48. Soit $\rho \in SO(\mathbf{C})$ et $\theta \in \mathbf{R}$. On dit que θ est un **angle orienté** de rotation ρ (ou que ρ est une rotation d'angle θ) si $\rho = \rho_u$ avec $u := \exp(i\theta)$.

Proposition 49. Soit $\rho_1, \rho_2 \in SO(\mathbb{C})$ d'angles orientés respectifs θ_1 et θ_2 . Alors $\rho_1 \circ \rho_2$ est une rotation vectorielle d'angle orienté $\theta_1 + \theta_2$.

Définition 50. Soit $z, t \in \mathbb{C}^*$. On appelle **angle orienté de** z **et** t tout angle orienté d'une rotation qui envoie $\frac{z}{|z|}$ sur $\frac{t}{|t|}$.

Proposition 51 : Relation de Chasles. Considérons $x,y,z\in \mathbf{C}^*$ et α,β des angles orientés respectifs de x,y et y,z. Alors $\alpha+\beta$ est un angle orienté de x et z.

Corollaire 52. Considérons $z_0, \ldots, z_n \in \mathbb{C}^*$ et pour $k \in [1, n]$, θ_k un angle orienté de z_{k-1} et z_k . Alors $\theta_1 + \ldots + \theta_n$ est un angle orienté de z_0 et z_n .

3.2. Matrices remarquables

On considère n un entier naturel non nul. On suppose que \mathbb{C}^n est muni de son produit scalaire hermitien canonique.

Définition 53. Soit $A \in \mathcal{M}_n(\mathbf{C})$. On note $A^* := \overline{A}^{\top}$. La matrice A est dite unitaire si $A^*A = AA^* = I_n$.

Exemple 54. Les matrices suivantes sont unitaires :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & j \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} \frac{\sqrt{3}}{2}i & -\frac{1}{2}j \\ \frac{1}{2}j^2 & -\frac{\sqrt{3}}{2}i \end{pmatrix}.$$

Proposition 55. L'ensemble des matrices unitaires, noté $U_n(\mathbf{C})$, est un groupe pour la multiplication matricielle.

Théorème 56. Le déterminant réalise un morphisme de groupes surjectif de $U_n(\mathbf{C})$ sur \mathbf{U} . Son noyau est le groupe spécial unitaire $SU_n(\mathbf{C})$.

Théorème 57. Soit $A \in U_n(\mathbf{C})$. Alors $\operatorname{Sp}(A) \subset \mathbf{U}$ et A est diagonalisable en une base orthonormée formée de vecteurs propres.

Définition 58. On appelle matrice circulante une matrice de $\mathcal{M}_n(\mathbf{C})$ du type :

$$C = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \cdots & a_{n-1} \\ \vdots & & \ddots & \vdots \\ a_2 & a_2 & \cdots & a_1 \end{pmatrix},$$

où $a_1,\ldots,a_n\in\mathbf{C}$.

Proposition 59 : Déterminant circulant. [DEV 3] Soit C la matrice circulante définie ci-dessus. Notons $P(X) := a_1 + a_2X + \ldots + a_nX^{n-1}$ et $\omega := \exp(2i\pi/n)$. Alors

$$\det(C) = \prod_{k=0}^{n-1} P\left(\omega^k\right).$$

Application 60. [DEV 3] Soient \mathcal{P} un polygône du plan complexe dont les sommets sont notés z_1, \ldots, z_n et $a, b \in]0,1[$ tels que a+b=1. On définit par récurrence la suite $(\mathcal{P}_k)_{k\in\mathbb{N}}$ par $\mathcal{P}_0 = \mathcal{P}$ et $\mathcal{P}_{k+1} = B_{a,b}(\mathcal{P}_k)$ le polygône dont les sommets sont les $z_i^{(k+1)} = az_i^{(k)} + bz_{i+1}^{(k)}$ (avec la convention $z_{n+1}^{(k)} = z_1^{(k)}$). Alors la suite $(\mathcal{P}_k)_{k\in\mathbb{N}}$ converge vers l'isobarycentre de \mathcal{P} .

Références:

- \star J.E. Rombaldi, Algèbre & géométrie
- \star C. Deschamps, Tout en un MPSI

Pour les développements :

- \star Dév 1 : J.E. Rombaldi, Algèbre & géométrie
- \star Dév 2 : S. Francinou & al., Oraux~X-ENS Algèbre~2
- * Dév 3 : X. Gourdon, Les maths en tête Algèbre + Ph. Caldero & M. Peronnier, Carnet de voyage en Algébrie pour l'application