NOM : AUFORT  Prénom : William  Jury :

Algèbre → Entourez l'épreuve → Analyse

Sujet choisi : 104 : Groupes finis, exemples et applications.

Autre sujet :

1. Définition : Groupes finis
   a) On appelle groupe fini un ensemble G muni d'une loi de composition interne c.s. satisfaite par:
      - fermeture : 
      - associativité : 
      - existence d'un élément neutre: 
      - existence d'inverse: 

   b) Deux groupes finis (G, ∘) et (H, ‡) sont isomorphes si et seulement si il existe une bijection bijective φ : G → H telle que:

   c) Exemple : Il existe le groupe des entiers modulo 3, noté Z_3, composé des classes de restes modulo 3.

2. Théorème de Lagrange : Si G est un groupe fini et H un sous-groupe de G, alors la cardinalité de H divise la cardinalité de G.

   a) Proposition : Si G est un groupe fini et H un sous-groupe de G, alors la cardinalité de H divise la cardinalité de G.

   b) Corollaire : Si G est un groupe fini et H un sous-groupe de G, alors la cardinalité de H divise la cardinalité de G.

   c) Théorème de Cauchy : Si p est un nombre premier et p divise la cardinalité d'un groupe G fini, alors G possède un sous-groupe d'ordre p.
11. Action de thèse des groupes et applications aux groupes fins.

a) Indice. Quatrième.

Dans cette sous-partie, G est un groupe et H un sous-groupe de G.

Définition: La classe d'indice de G dans H est notée [G : H].

b) Action de groupe.

Théorème: Si G est un groupe, on dit que G agit sur X si on a une application G X \rightarrow X telle que:
- \( g \cdot x = g(x) \) pour tout \( g \in G \) et \( x \in X \).

c) Théorème de Sylow.

"Theorie 1 (Sylow).: Avec les notations précédentes, G contient un p-subgroupe premier avec P, où P est un p-subgroupe d'indice premier avec P.

Lemme 4.6 (Stabilité par sous-groupe). Si H est un sous-groupe de G et \( P \) un p-élément de G, alors:\n- Si \( P \) est dans H, alors \( P \) est dans H.
- Si \( P \) est dans H, alors \( P \) est dans H.

Théorème 4.8 (Sylow).: Si H est un p-sous-groupe de G, alors \( |H| = n! \) où n est un entier positif.
Galois 49. S'or l'unique projeté de $G_{13}G_{13}$.

Application : Un groupe d'ordre 3 n'est pas simple.

III. Construction de groupes

Théorème 51. A partir de deux groupes cycliques "crus" $Z/nZ, S_m,$ comment construire d'autres groupes ?

a) Produit direct

Définition 52. Soient $N, H$ deux groupes. Le produit direct $G = NH$ est défini comme suit : $G = NH$, la loi de produit est $(n, h) \cdot (n', h') = (nn', hh')$.

Proposition 53 (Groupes cycliques) $NH$ est le groupe direct des groupes $N$ et $H$.

b) Produit semi-direct

Proposition 54 (Théorème clé) : Si $p > 1, alors $Z/pZ \approx Z/pZ \times Z/qZ$.

Exemple 55 : $S_3 \cong Z/3Z$ non cyclique, donc ne peut s'écrire comme un produit direct.

b) Groupes d'ordre pq

Proposition 60 : Si $p > 1, alors $Z/pZ \approx Z/pZ \times Z/qZ$.

Proposition 61 : Si $p > 1, alors $Z/pZ \approx Z/pZ \times Z/qZ$.

Exemple 62 : Structure possible pour $G$ abélien de cardinal 60 ?

b) Groupes d'ordre pq

Proposition 63 : Soit $G$ un groupe abélien de cardinal pq, alors $G = Z/pZ \times Z/qZ$.

Proposition 64 : Soit $G$ un groupe abélien de cardinal pq, alors $G = Z/pZ \times Z/qZ$.

Exemple 65 : Structure possible pour $G$ abélien de cardinal 60 ?

c) Groupes de petit cardinal

Exemple 66 : Groupe de cardinal 6, $G = Z/6Z$ dans $G = S_3$.

Exemple 67 : $|H_6| = 6, H_6 \cong Z/6Z$.

Exemple 68 : Les groupes de cardinal 3 sont comme isomorphes à $Z/3Z$.
1) Définition

- Introduction : histoire de l'obtention des groupes.
  Act. on a d'abord la notion de 
  permutation, addition modulo un nombre naturel
  \[ G = \{ 0, 1, \ldots, n-1 \} \]
  Il faut attendre milieu du XIXe siècle pour la notion de groupe et l'obtention systématique.

2) Définitions

- \( G, + \)

3) Période directe. Que se passe-t-il si \( G \) est abélien ?

(II) Questions plan

- Exemple 1. Que voulons-nous déterminer un groupe ?
  Un premier groupe est cyclique ? Le groupe mult de \( F_p \)

- Chir 29 (née l'hom d'isom de \( F \)). Dém ?
  Le groupe \( \langle a, b \rangle \) est abélien.
  Prenant \( H = G \) alors on aurait \( H \) est abélien.
  C'est de si vogue distingué : \( G, \mathbb{Z}(G) \).
  Pourquoi \( HK \) est un groupe ?
  \( L_b \) \( H \subseteq G \), \( L_b (hk)(k'h') \subseteq HK \)

- Exemple 62 : C'est quoi l'homomorphisme de \( \mathbb{Z}/2\mathbb{Z} \to \text{Aut}(\mathbb{Z}/2\mathbb{Z}) \)?
  la seconde c'est -1 = sym et \( \phi \) on, \( \phi \) de \( \mathbb{Z}/2\mathbb{Z} \to \text{Aut}(\mathbb{Z}/2\mathbb{Z}) \)

- Prop 64 : On peut dire précisément la forme de \( \langle \mathbb{Z}/2\mathbb{Z} \rangle \). Oui, oui ! Il y a une form explique...
$H \triangleleft G$. $S$ p-sylow de $H$ $S \triangleleft H$. $\exists g \in G$

En effet, $\forall K \triangleleft H$ avec $H \triangleleft G$ alors $\forall x \in G$, $xKx^{-1} \triangleleft H$ car $H$ distincte. Ici on a en plus un p-sylow et on construit $mg$ qui reste un p-sylow. $xSx^{-1}$ est de même cardinal que $S$ donc $xSx^{-1} \triangleleft S$.

**Re:**

Donner les groupes abéliens de card $120$

La décomposition $120 = 2 \times 5 \times 2^2 \times 3 = 2^3 \times 3 \times 5$.

\[
\hom (120) \sim \mathbb{Z}/120 \mathbb{Z}
\]

\[
(2,60) \sim \mathbb{Z}/12 \times \mathbb{Z}/60 \mathbb{Z}
\]

\[
(2,2,\frac{2 \times 3 \times 5}{30}) \sim (\mathbb{Z}/2 \mathbb{Z})^5 \times \mathbb{Z}/30 \mathbb{Z}
\]

### Exos

**Prop.**

Bien. Suggérer pr gagner du temps : il y a un seul élément d'ordre 2, on l'appelle $1$ et $i^2 = j^2 = 1^2 = -1$ et $1 \in \mathbb{Z}/3\mathbb{Z}$.

**Déf.**


Ce qui on pourrait écrire (s'il n'y a pas d'appl.) :

* isomorph (si bien)
* Burnside

($*$ p-sylow) $\Rightarrow$ il faut bien maîtriser ce qu'On va avant et après.

$p$ (petit semi-direct) $\Rightarrow$ c'est bien, vu il faut avoir bien maîtriser.

ici on a l'impression que $D_n = \mathbb{Z}/2 \times \mathbb{Z}/n \mathbb{Z}$ pas canonique

alors que si.
V) Autres possibilités
- Dénombrement
- Isomorphies remarquables / exceptionnels
- Représentation

VI) Questions à se poser
- Groupe quelconque $\mathbb{Z}/n\mathbb{Z}, D_n, C_n, S_n, GL(n, K)$
  Se demander pourquoi $n! = 1$ ?